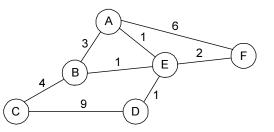


- Intradomain routing
 - distance vector routing (RIP)
 - link state routing (OSPF)
 - determining link costs
- Routing in global Internet
 - mechanisms: subnetting and classless routing (CIDR)
 - interdomain routing (BGP)
- Routing private and public IP addresses (NAT)

S-38.188 - Computer Networks - Spring 2004

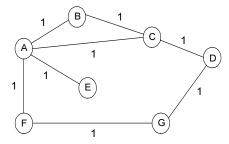

Intradomain routing

- Forwarding vs routing
 - routing: process by which routing table is built
- Intradomain routing
 - domain = routers belonging in same administrative domain ("cloud")
 - same as IGP (Interior Gateway Protocol)
 - still not scalable to huge networks

Least cost routing

- Network as a (weighted) graph
 - vertices = routers
 - edges = network links
 - edge weight = cost of using the link

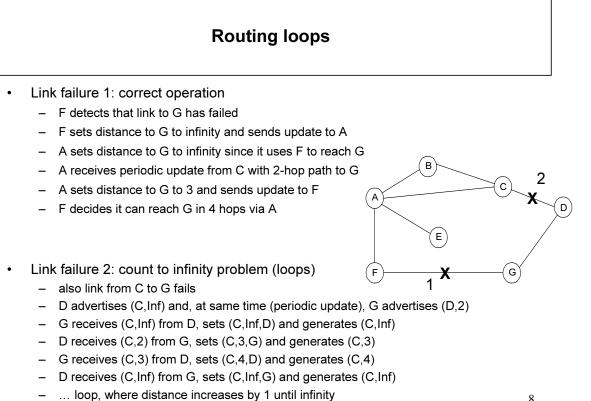
- · Problem: find lowest cost path between two nodes
 - assuming given links costs (determining them treated later...)
 - using a distributed algorithm
 - two classes of algorithms: distance vector (RIP) and link state (OSPF)
- Factors
 - changing topology and varying link costs (loads)
 - topology changes at a slower time scale


S-38.188 - Computer Networks - Spring 2004

- Idea in distance vector routing
 - nodes construct vector containing distances to all other nodes
 - distance vector distributed to all neighbors
 - initially each node knows only distance to immediate neighbors
 - a link that is down has "infinite" cost
 - converges typically quickly after few iterations
- More detailed:
 - each node maintains a list of triplets: (Destination, Cost, NextHop)
 - exchange updates with directly connected neighbors
 - periodically (on the order of several seconds)
 - whenever table changes (called triggered update)
 - each update is a list of pairs: (Destination, Cost)
 - update local table entry
 - always, if route update comes from entry's "next hop" router
 - if receive a "better" route (smaller cost) from any neighbor (next-hop routers)
 - refresh existing routes; delete if they time out

Example

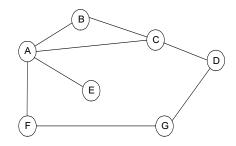
- Events at node B
 - learns from C that D can be reached at cost $1 \Rightarrow$ cost from B to D via C is 2 \Rightarrow new route accepted by B
 - learns from C that A can be reached at cost 1 \Rightarrow cost from B to A via C is 2 \Rightarrow new route not accepted by B
 - learns from A that E can be reached at cost $1 \Rightarrow$ cost from B to E via A is 2 \Rightarrow new route accepted by B
 - learns from A that F can be reached at cost $1 \Rightarrow$ cost from B to F via A is 2 \Rightarrow new route accepted by B
 - learns from C that G can be reached at cost $2 \Rightarrow$ cost from B to G via C is 3 \Rightarrow new route accepted by B


Initial routing table at B

Destination	Cost	NextHop
A	1	Α
С	1	С
D	Inf	-
E	Inf	-
F	Inf	-
G	Inf	-

Final routing table at B

Destination	Cost	NextHop
A	1	A
С	1	С
D	2	С
E	2	А
F	2	А
G	3	С


7

Loop-breaking heuristics

- Previous just an example of what can go wrong

 can occur in more complex network scenarios
 - one basic reason is that due to timing of events it is possible that a particular node can transmit "false" information before new information has reached it
- Set infinity to 16
- Split horizon
 - node does not send those routes it learned from its neighbors
 - B uses route (E,2,A), during update B does not include (E,2) in the message to A

- Split horizon with poison reverse
 - send negative information back to neighbors to ensure that e.g. A never sends traffic to E via B
 - B sends route information back to A containing (E,Inf)
- These techniques work only for routing loops involving 2 nodes

S-38.188 - Computer Networks - Spring 2004

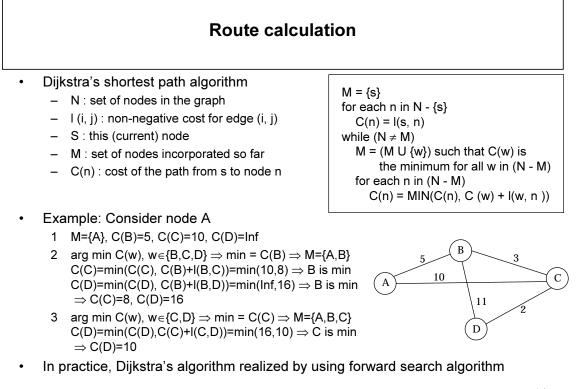
Routing Information Protocol (RIP)

- RIP widely used in Internet
 - implemented in BSD version of Unix
- Straightforward implementation of distance vector routing
 - routers advertise the cost of reaching networks (instead of other routers)
 - periodic updates every 30 s
 - RIP supports multiple protocol families (not just IP)
 - RIP assumes that link costs are always equal to 1 (minimum hop route)
 - valid distances 1, ..., 15, and Infinity = 16
- RIPv2 has some scalability features

- Intradomain routing
 - distance vector routing (RIP)
 - link state routing (OSPF)
 - determining link costs
- Routing in global Internet
 - mechanisms: subnetting and classless routing (CIDR)
 - interdomain routing (BGP)
- Routing private and public IP addresses (NAT)

11

S-38.188 - Computer Networks - Spring 2004


Link state routing overview

- Strategy
 - same as in distance vector routing: provide enough info to nodes so they can build least cost paths to all destinations
 - every node knows how to reach directly connected nodes
 - send to all nodes (not just neighbors) information about directly connected links (not entire routing table)
 - · nodes get complete topology information
 - · from topology information, compute shortest paths
- Mechanisms
 - reliable flooding of link state information (using LSPs)
 - Dijkstra's algorithm to compute shortest paths

Reliable flooding

- Link State Packet (LSP)
 - id of the node that created the LSP
 - cost of link to each directly connected neighbor
 - sequence number (SEQNO)
 - time-to-live (TTL) for this packet
- Reliable flooding
 - reliable delivery of LSPs by using ACKs and retransmissions between neighbors
 - store most recent LSP from each node (based on SEQNO)
 - · important to have always the most recent routing info
 - forward LSP to all neighboring nodes but the one that sent it
 - generate new LSP periodically (or triggered if directly connected link fails)
 - increment SEQNO
 - start SEQNO at 0 when reboot
 - decrement TTL of each stored LSP
 - discard when TTL=0
- After flooding is complete every node has complete topology information
 - shotrest paths can be now computed

13

Properties of link state routing

- Properties (+/-)
 - + stabilizes quickly
 - + does not generate much excess traffic
 - + responds quickly to topology changes or node failures
 - amount of info stored in each node quite large (LSP for each node)
 - fundamental problem of scalable routing
- Distance vector vs. link state
 - in distance vector each node talks only to its neighbors and tells everything it has learned (entire routing table, even though info may not be accurate)
 - in link state, each node talks to all other nodes, but it tells them only what it knows for sure (state of its own directly connected links)

	-	
1	5	
1	2	

S-38.188 - Computer Networks - Spring 2004

Open Shortest Path First (OSPF)

- One of the most widely used link state routing protocols
- Additional features
 - authentication of routing messages (password, cryptographic encryption)
 - provides additional hierarchy (scalability)
 - domain can be partitioned into areas
 - routing based on areas (not on all networks within an area)
 - load balancing
 - supports use of multiple cost metrics based on TOS field (QoS support)
 - · not widely used

- Intradomain routing
 - distance vector routing (RIP)
 - link state routing (OSPF)
 - determining link costs
- Routing in global Internet
 - mechanisms: subnetting and classless routing (CIDR)
 - interdomain routing (BGP)
- Routing private and public IP addresses (NAT)

17

S-38.188 - Computer Networks - Spring 2004

Metrics (1)

- Several metrics tested in development of ARPANET
 - also superiority of link state over distance vector demonstrated in ARPANET
- Original ARPANET metric
 - number of packets enqueued on each link
 - took neither latency or bandwidth into consideration
 - · just moves packets towards shortest queues

Metrics (2)

- New ARPANET metric
 - stamp each incoming packet with its arrival time (AT)
 - record departure time (DT)
 - Delay = (DT AT) + Transmit + Latency
 - (DT-AT) = (random) queuing delay
 - Transmit = packet transmission delay
 - Latency = length of the link
 - link cost = average delay over some time period (10 seconds)

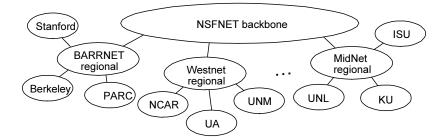
• Performance

- worked well under light load (Transmit and Latency dominate delay)
- instability under heavy load
 - congestion ⇒ traffic routed away from link ⇒ link becomes idle ⇒ all traffic routed back ⇒ congestion ⇒ ...

	-
1	\mathbf{n}
н	9
•	-

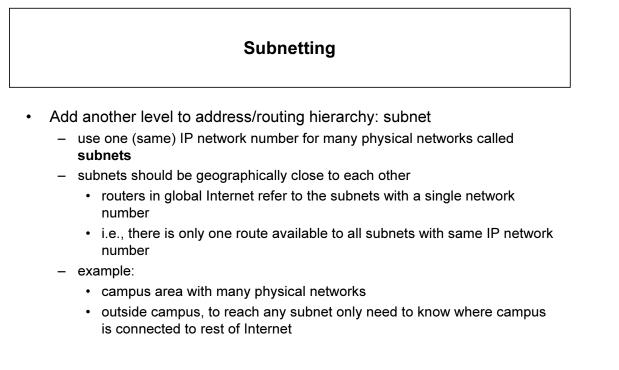
- Specific problems with "New ARPANET metric"
 - range of variation is too wide
 - 9.6 Kbps highly loaded link can appear 127 times costlier than 56 Kbps lightly loaded link
 - can make a 127-hop path look better than 1-hop
 - no limit in reported delay variation
- Fine tuning (revised ARPANET metric)
 - compressed dynamic range: e.g. congested link cost max 3 x idle link cost
 - replaced delay with link utilization
 - · link utilization affects metric only in moderate to high loads
 - otherwise metric dominated by constant Transmit and Latency values

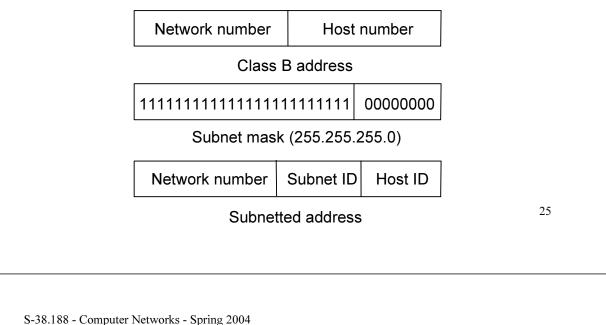
- Intradomain routing
 - distance vector routing (RIP)
 - link state routing (OSPF)
 - determining link costs
- Routing in global Internet
 - mechanisms: subnetting and classless routing (CIDR)
 - interdomain routing (BGP)
- Routing private and public IP addresses (NAT)

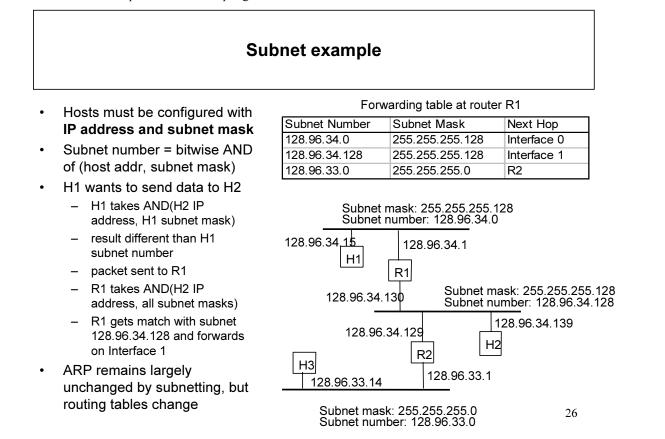

21

S-38.188 - Computer Networks - Spring 2004

How to make routing scale


- Two problems:
 - routing protocol scalability
 - address space depletion
- Routing scalability
 - original Internet hierarchy: address consists of network and host part
 - thus far, for routing we assumed that routers need to know all networks
 - clearly not scalable as nof networks grows
 - routing tables do not scale
 - · route propagation protocols do not scale
- Inefficient use of hierarchical address space
 - class C with 2 hosts (2/255 = 0.78% efficient)
 - class B with 256 hosts (256/65535 = 0.39% efficient)
 - class C network has only room for 256 hosts ⇒ medium sized companies prefer class B networks, but only 16 000 class B networks possible


- Interconnects many different organizations
 - End user sites connected to regional service providers
 - Service providers connected to (government controlled) NSFNET backbone
- End user, service provider and back bone networks administratively independent – called **Autonomous Systems** (AS), each AS may run different routing protocol
- Structure can be utilized to make routing more scalable
- Task: minimize nof network numbers distributed with routing protocols and increase address assignment efficiency


```
23
```


Subnet masking

- Subnet mask defines a variable partition of IP address into
 - network number, subnet number and host number
 - subnets visible only within site
- Example: sharing a class B network address
 - split class B host part into subnet part and host part
 - in global Internet subnets are commonly addressed with the class B address

Subnetting additional features and summary

- Additional features/consequences:
 - not necessary for all 1s in subnet mask to be contiguous (its usefulness not clear and not recommended in practise)
 - can put multiple subnets on one physical network (for administrative reasons)
 - different parts of Internet see things differently (routers inside campus see subnets, which are not visible outside)
- Benefits:
 - subnetting improves address assignment efficiency by letting us not use an entire class B or C address every time a new physical network is added
 - helps in aggregating routing information (a subnetted network appears to the outside Internet as a single network=single routing entry in tables)
- Subnetting supported by RIPv2 and OSPF-2

27

S-38.188 - Computer Networks - Spring 2004

Supernetting

- Problem with subnetting:
 - any corporation with more than 255 hosts needs a class B address
 - \Rightarrow class B address depletion
- Solution: CIDR (Classless Inter-Domain Routing)
 - ... also called supernetting
 - minimizes amount of route info through aggregation and breaks rigid address boundaries between classes
 - idea: assign block of contiguous network numbers to nearby networks
 - restrict block sizes to powers of 2
- Result: we need routing protocols that support "classless" addresses
 - for example BGP-4
 - network numbers represented by (value, length) pairs, length=nw prefix length
 - all routers must understand CIDR addressing

Supernetting continued

- Observation:
 - subnetting used to share one network number among multiple physical networks
 - CIDR aggregates all network numbers assigned to an AS to one
- · Possible to aggregate routes repeatedly if addresses assigned properly
 - if two corporations have adjacent 20-bit network prefixes, the service provider can advertise a single route with 19-bit prefix to both networks
- Changes in IP forwarding required by use of CIDR
 - with CIDR prefix length can be 2-32 bits
 - address format: network number/prefix length, e.g., 171.69/16
 - for a given network address it is possible to have several matching prefixes
 - address 171.69.10.3 would match prefixes 171.69 and 171.69.10
 - rule is to use the longest match for forwarding
 - longest match contains most specific information

```
29
```

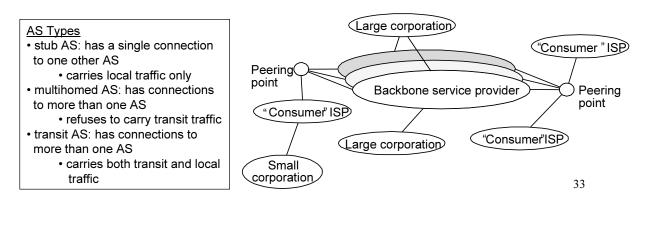
S-38.188 - Computer Networks - Spring 2004

Outline

- Intradomain routing
 - distance vector routing (RIP)
 - link state routing (OSPF)
 - determining link costs
- Routing in global Internet
 - mechanisms: subnetting and classless routing (CIDR)
 - interdomain routing (BGP)
- Routing private and public IP addresses (NAT)

Interdomain routing

- Internet organized as a collection of interconnected ASs
 - each AS administratively independent from other ASs
 - ASs provide an additional way to hierarchically aggregate routing information
- Routing problem decomposition
 - routing inside an AS (intradomain routing)
 - AS can use any routing protocol as its intradomain routing protocol (RIP, OSPF, even static routing)
 - routing between ASs (interdomain routing)
 - · routing deals with sharing reachability information between ASs


S-38.188 - Computer Networks - Spring 2004

Interdomain routing continued

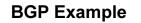
- Route information propagation:
 - "know a smarter router" (called default route)
 - hosts know local router
 - local routers know site routers
 - site routers know core router
 - core routers know everything
 - idea: by using default routes, routers do not necessarily need to know much about routes leading outside a given AS
- Main problem:
 - managing the amount of route information in backbone routers
- First approach for interdomain routing: EGP
 - designed for tree-structured Internet
 - concerned with reachability, not optimal routes
 - Problem: modern Internet no longer tree structured!

Internet structure today (US view)

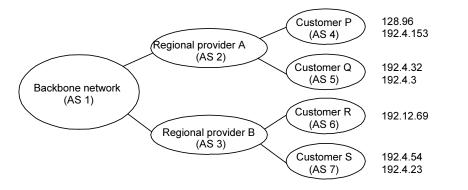
- Internet consists of multiple backbones (service provider networks)
- Different sites (ASs) connected to the Internet in arbitrary ways
 large corporations can connect to one or more backbones
 - ISPs mainly exist to provide consumers access to the Internet
- Providers connect via peering points:
 - "an interconnection of public networks that allows customers of one network to exchange traffic to customers directly on the second ISP's network"

S-38.188 - Computer Networks - Spring 2004

BGP-4: Border Gateway Protocol overview


- Interdomain routing protocol for modern Internet: BGP-4
 - assumes Internet consists of arbitrarily connected ASs
- Interdomain routing problem
 - goal to find loop free paths (reachability more important than optimality)
 - why not optimal?
 - scale (>50 000 routes in back bone)
 - ASs independent (can use any routing protocol and metric)
 - trust: provider A may not trust provider B's route information
 - policy routing: provider A wants to prefer some routes over others

BGP-4 overview continued


- Each AS has:
 - one or more border routers (called gateways)
 - · routers through which packets enter and leave AS
 - one border router chosen as "BGP speaker", communicates with other ASs
 - BGP speaker advertises:
 - local networks
 - other reachable networks (transit AS only)
- · Each non-stub AS has a unique id
 - 16 bit numbers assigned by central authority
- BGP advertises complete paths as a list of ASs to reach a particular network
 - necessary for policy routing and loop detection (if speaker sees own id in any path list \Rightarrow loop)
 - possible to make negative advertisements (to with draw routes)
 - update format: prefix/length, e.g., 192.4.16/20

35

36

- Speaker for AS2 advertises reachability to P and Q
 - network 128.96, 192.4.153, 192.4.32, and 192.4.3, can be reached directly from AS2
- Speaker for backbone advertises
 - networks 128.96, 192.4.153, 192.4.32, and 192.4.3 can be reached along the path (AS1, AS2).
- Speaker can also cancel previously advertised paths (link failures etc.)

BGP and intradomain routing

- BGP-4 in short
 - BGP-4 specifies how reachability info is exchanged among ASs
 - BGP speakers get enough info to compute loop free routes, but how to choose the best is not specified
- How all other routers in an AS get the route information of gateway router(s)
 - in a stub AS, other routers need only know "default" router (=border router)
 - in a multihomed AS (regional provider), border router A can inject routing info about a customer AS into the AS intradomain routing protocol
 - "A has link to network 192.4.54/24 of cost X"
 - · other routers learn that to reach above prefix, send packets to router A
 - in the backbone problem is that there is too much route info to be injected
 - Interior-BGP used to distribute route info from AS speakers to other backbone routers

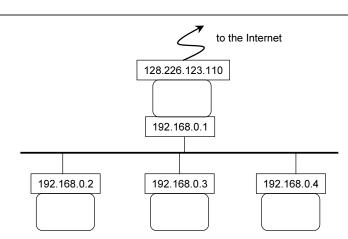
37

S-38.188 - Computer Networks - Spring 2004

Routing in today's Internet summary

- Internet is a collection of interconnected ASs
- Routing divided into intra-/interdomain
- Intradomain inside an AS
 - usually based on OSPF
 - · shortest path routing based on a link state algorithm
 - about metrics: based on simple static metrics (~ 1/link_bandwidth)
 - dynamic metrics too "unstable"; earlier just history of development of Internet routing metrics (before Internet became public)
- Interdomain routing between Ass
 - BGP-4 is the currently used interdomain routing protocol
 - based on advertising loopless paths to other ASs
 - addresses of each AS based on CIDR addressing format
 - subnetting can be used to further divide CIDR based network address into smaller chunks (sub-domains)

- Intradomain routing
 - distance vector routing (RIP)
 - link state routing (OSPF)
 - determining link costs
- Routing in global Internet
 - mechanisms: subnetting and classless routing (CIDR)
 - interdomain routing (BGP)
- Routing private and public IP addresses (NAT)


39

S-38.188 - Computer Networks - Spring 2004

Private network addresses

- Problem:
 - even with dynamic IP assignment, one may end up having more hosts than IP numbers assigned
 - public IP addresses cost money \Rightarrow need to minimize nof such addresses
- Solution:
 - cheat and use unassigned numbers
 - on the Internet there is an agreement that some addresses are not routed to the backbone (RFC1918)
 - 10.0.0/8
 - 192.168.0.0/16
 - 172.16.0.0/12
 - make sure that these numbers are only visible inside of your subnet!
- These addresses are called private networks and are used for NAT (Network Address Translation)
 - NAT technology widely used in current Internet
 - Linux: IP Masquerading
 - Windows: Internet Connection Sharing
 - Elsewhere: Network Address Translation

- One machine has a legitimate IP address and is connected to the Internet
- Internally, other machines are assigned private addresses
- NAT machine establishes "proxy" connections on behalf of the other machines
- Only NAT machine is visible to the outside

41