Problem

- Aim: Build networks connecting millions of users around the globe
 - also spanning networks based on any technology

- Problems: heterogeneity and scalability
 - bridges can be used to connect different LANs (extended LANs)
 - heterogeneity: need to support different LANs, point-to-point technologies, switched networks, different addressing formats
 - scalability: addressing (management and configuration) and routing must be able to handle millions of hosts
 - in this lecture, we examine the (original) IP protocol, IP addressing, packet forwarding
Outline

• Internet architecture
 • IP service model
 • IP forwarding
 • Address translation (ARP)
 • Automatic host configuration (DHCP) and error reporting (ICMP)
 • Virtual Private Networks (VPNs)

Terminology

– network = network based on LAN or extended LAN technology
– internet = “network of networks”
– Internet = internet using IP
– routers = nodes connecting networks
– IP = Internet Protocol, current version IPv4 (IP Version 4)
IP design principles

- Cerf and Kahn’s internet design principles (1974)
 - minimalism, autonomy
 - no internal changes required to interconnect networks
 - network is self-configuring as much as possible
 - network can survive node and link failures
 - best effort service model
 - packets are not offered any guarantees
 - simplifies packet processing
 - stateless routers
 - network does not store information of any “connections” or user state
 - routers forward autonomous packets
 - decentralized control
 - enables high survivability (in presence of, e.g., link or node failures)

Internet architecture

- Internet architecture has only 4 layers
 - L4 (Application layer): FTP, HTTP, ...
 - L3 (Transport layer): TCP (reliable byte transfer) and UDP (unreliable datagram delivery) provide logical channels to applications
 - L2 (IP layer): IP protocol interconnects multiple networks into a single logical network
 - L1 (“Link” layer): wide variety of LAN and point-to-point protocols

- Internet architecture features
 - Does not imply strict layering
 - IP defines a common way for exchanging packets among widely differing networks
 - “Hour glass”-shape

- Aim: heterogeneity and scalability
IETF (Internet Engineering Task Force)

- Majority of Internet development (standardization) done by IETF
 - offers a mutual forum for the development of the Internet to vendors, users, researchers, service providers and network managers
 - develops architectures and protocols for solving technical issues
 - gives recommendations on the use of protocols
 - performs dissemination of the recommendations of IRTF (Internet Research Task Force) which is responsible for long term development of Internet
 - IETF requires always working implementations before any protocol specification is accepted as a standard (“we believe in running code”)

- Working methods
 - has meetings 3 times a year
 - work conducted within study groups (> 100 study groups)
 - joining a group done via e-mail to the mailing list
 - study groups belong to 8 different fields

- work reported in Internet drafts and RFCs (Request for Comments)
 - Internet drafts have no official status, serve as basis for RFCs
 - not all RFCs are standards (Informational, Best Current Practice, …)
 - http://www.ietf.org
Outline

- Internet architecture
- **IP service model**
 - IP forwarding
 - Address translation (ARP)
 - Automatic host configuration (DHCP) and error reporting (ICMP)
 - Virtual Private Networks (VPNs)

Service model

- Idea in the Internet service model:
 - Make it undemanding enough that IP can be run over anything
 - One of the major reasons for the success of IP technology

- Service model consists of 2 parts:
 - Model for data delivery
 - Addressing scheme
Data delivery model

- Data delivery in Internet
 - IP network connectionless (datagram-based)
 - IP network offers best-effort delivery (unreliable service)
 - packets are lost
 - packets are delivered out of order
 - duplicate copies of a packet are delivered
 - packets can be delayed for a long time
 - ⇒ “intelligence” implemented at the end hosts
 - datagram format (next slide)

IP datagram format details

- Format aligned at 32 bit words
 - simplifies packet processing in sw
- Fields
 - Version: currently version 4 (6 is coming)
 - HLen: header length, 32 bit words (min 5)
 - TOS: type of service, used to give priorities to packets (QoS lecture)
 - Length: datagram+header length, in bytes
 - 2nd word for fragmentation/reassembly
 - TTL: time to live, nof times packet allowed to be forwarded (nof hops), default 64, detects packets caught in routing loop
 - Protocol: identifies upper layer protocols, TCP (6), UDP (17)
 - Checksum: erroneous packets discarded
 - Addresses: global Internet addresses
 - Options: rarely used
Fragmentation and reassembly

- Each network has an MTU (Maximum Transfer Unit)
 - Ethernet 1500 bytes, FDDI 4500 bytes, PPP 512 bytes

- Strategy
 - fragment when necessary (MTU < datagram length)
 - try to avoid fragmentation at source host
 - host sets datagram size equal to MTU of home network
 - for ATM MTU based on CS-PDU size (not cell size)
 - fragments are self-contained datagrams
 - each fragment contains a common identifier in Ident field
 - Flags (M-bit) and Offset used to guide fragmentation process
 - Offset measured in 8B units
 - fragmented packet can be again re-fragmented
 - reassembly performed only at destination host
 - reassembly does not try to recover from lost fragments

Fragmentation/reassembly example

- Original message 1400B + 20B header

Start of header

<table>
<thead>
<tr>
<th>Start of header</th>
<th>Start of header</th>
<th>Start of header</th>
<th>Start of header</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ident</td>
<td>x</td>
<td>0</td>
<td>Offset</td>
</tr>
<tr>
<td>Rest of header</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1400 data bytes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fragmentation/reassembly example

- Original message 1400B + 20B header
IP addressing

- **Properties**
 - globally unique, 32 bits
 - hierarchical: network + host
 - address identifies interface
 - end host has 1 interface
 - router has many interfaces
 - IP address ≠ domain name
- **Original classful addressing**
 - class A, B and C networks
 - defines different sized networks
 - idea: small nof WANs, modest nof campus networks, large nof LANs
- **Dot Notation**
 - 32 bit addresses represented as group of 8 bit integers
 - e.g., 10.3.2.4, 128.96.33.81

Outline

- Internet architecture
- IP service model
- **IP forwarding**
 - Address translation (ARP)
 - Automatic host configuration (DHCP) and error reporting (ICMP)
 - Virtual Private Networks (VPNs)
IP forwarding (1)

- Some terminology:
 - **forwarding**:
 - process of taking a packet from input interface, and …
 - based on the contents of the *forwarding table*, determining the correct output interface for the packet
 - **routing**:
 - process of constructing forwarding tables that enable efficient routing of traffic in the network (lecture 5)

IP forwarding (2)

- Preliminaries
 - Every datagram contains destination’s address
 - Every node has a forwarding table
 - normal hosts with one interface have only default router configured
 - routers maintain forwarding tables with multiple entries (constructed via routing process)
 - forwarding table maps network number into next hop router number or local interface number

- Strategy
 - Any node receiving a packet (router/host) checks destination network address of datagram and …
 - if directly connected to destination network, then forward to host
 - need to map IP address to physical LAN address ⇒ ARP
 - if not directly connected to destination network, then forward to next hop router
IP forwarding example

- H1 → H3 : forwarding on the same network
- H1 → H8 : via R1 and R2

Forwarding table of H1

<table>
<thead>
<tr>
<th>NetworkNum</th>
<th>NextHop</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Default (R1)</td>
</tr>
<tr>
<td>2</td>
<td>Interface 0</td>
</tr>
<tr>
<td>3</td>
<td>Default (R1)</td>
</tr>
<tr>
<td>4</td>
<td>Default (R1)</td>
</tr>
</tbody>
</table>

Forwarding table of R2

<table>
<thead>
<tr>
<th>NetworkNum</th>
<th>NextHop</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R3</td>
</tr>
<tr>
<td>2</td>
<td>R1</td>
</tr>
<tr>
<td>3</td>
<td>Interface 1</td>
</tr>
<tr>
<td>4</td>
<td>Interface 0</td>
</tr>
</tbody>
</table>

Routers vs. bridges

- Bridge (+/-)
 - bridge operation simple, requires less processing
 - transparent (no configuration needed when new nodes added to LAN)
 - restricted topology (forwarding determined by a spanning tree)
 - LANs use a flat addressing space (no hierarchical network structure)

- Router (+/-)
 - arbitrary topologies, enables use of efficient routing algorithms for distributing traffic (helps traffic management)
 - hierarchical addressing enables scalability:
 - scalability requires minimization of address info stored in routers
 - routing based on network numbers ⇒ forwarding tables contain info on all networks, not all nodes
 - requires IP address configuration
 - packet processing more demanding
 - Summary: bridges do well in small (~ 100 hosts) networks while routers are used in large networks (1000s of hosts)
Outline

- Internet architecture
- IP service model
- IP forwarding
- Address translation (ARP)
 - Automatic host configuration (DHCP) and error reporting (ICMP)
 - Virtual Private Networks (VPNs)

Address translation

- Earlier, we skipped the part what to do when router/host notes that it is connected directly to the network where an arriving packet is destined.

- Need to map IP addresses into physical LAN addresses
 - destination host
 - next hop router

- Techniques
 - encode physical LAN address in host part of IP address
 - not scalable
 - table-based (maintain IP address, PHY address pairs)
 - \Rightarrow ARP
ARP details

- ARP (Address Resolution Protocol)
 - utilizes LAN’s broadcast capabilities
 - each node maintains table of IP to physical LAN address bindings
 - broadcast request if IP address not in table
 - target machine responds with its physical LAN address

- ARP request contains also source addresses (physical and IP)
 - all “interested” parties can learn the source address

- Node (host/router) actions:
 - table entries timeout in about 10 minutes
 - if node already has an entry for source, refresh timer
 - if node is the target, reply and update table with source info
 - if node not target and does not have entry for the source, ignore source info

- ARP info can be incorporated in the contents of forwarding table

ARP Packet Format

- Request Format
 - HardwareType: type of physical network (e.g., Ethernet)
 - ProtocolType: type of higher layer protocol (e.g., IP)
 - HLen & PLen: length of physical and upper layer addresses
 - Operation: request or response
 - Physical/IP addresses of Source and Target

<table>
<thead>
<tr>
<th>0</th>
<th>8</th>
<th>16</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hardware type = 1</td>
<td>ProtocolType = 0x0800</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HLen = 48</td>
<td>PLen = 32</td>
<td>Operation</td>
</tr>
<tr>
<td></td>
<td>SourceHardwareAddr (bytes 0 – 3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SourceHardwareAddr (bytes 4 – 5)</td>
<td>SourceProtocolAddr (bytes 0 – 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SourceProtocolAddr (bytes 2 – 3)</td>
<td>TargetHardwareAddr (bytes 0 – 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TargetHardwareAddr (bytes 2 – 5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TargetProtocolAddr (bytes 0 – 3)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Classical IP over ATM

- Problem: ARP uses broadcast, but
 - ATM is connection oriented (no broadcasting)
- Solution:
 - LANE not useful if nodes spread over large area
 - Classical IP over ATM and ATMARP server
- Classical IP over ATM
 - group nodes of ATM network into several LIS (Logical IP Subnet)
 - nodes in same LIS have same IP network number
 - nodes in same LIS communicate with each other directly using ATM (AAL5)
 - nodes in different LIS communicate via IP router
 - can connect large nof hosts and routers to a big ATM network without assigning addresses from same IP network
 - scalability: ATMARP handles smaller nof hosts

ATMARP

- ATMARP server
 - resolves ATM addresses to IP addresses (like ARP translates ETH to IP)
 - does not rely on broadcast
- Functionality
 - each node in a LIS sets up VC to ATMARP and registers (sends own ⟨ATM, IP⟩ address pair)
 - ARP server builds table of ⟨ATM, IP⟩ address pairs for all registered nodes
 - nodes make queries to ARP server
 - nodes can keep cache of ⟨ATM, IP⟩ address mappings
 - like in traditional ARP
 - VC to a destination can be kept alive as long as needed
- Note! In Classical IP over ATM two nodes in same ATM network cannot communicate directly if they are in different subnets.
Outline

- Internet architecture
- IP service model
- IP forwarding
- Address translation (ARP)
- Automatic host configuration (DHCP) and error reporting (ICMP)
- Virtual Private Networks (VPNs)

Network management and scalability

- Mechanisms in IP that enable heterogeneity and scalability
 - heterogeneity:
 - best effort service model that makes minimal assumptions on underlying network capabilities
 - common packet format, fragmentation used for networks with different MTUs
 - global address space (ARP maps physical addresses to IP)
 - scaling:
 - hierarchical aggregation of routing information (network/host number)
 - above focuses on minimizing network state info in devices
- Important also to consider management complexity as network grows
 - example: configuration of IP addresses via DHCP
Need for automatic configuration

- IP addresses need to be reconfigurable
 - Ethernet addresses hardwired onto the network adapter
 - IP address consists of network and host part
 - hosts can move between networks ⇒ host gets new address in each network
- Need for automated host configuration
 - hosts need other configuration info, e.g., the default router
 - configuration manually impossible (too much work and errors)
 - ⇒ Dynamic Host Configuration Protocol (DHCP)
- DHCP server
 - at least one DHCP server for each administrative domain
 - centralized repository for configuration info
 - two operation modes:
 - administrator chooses host addresses and configures them to DHCP
 - DHCP manages the addresses by allocating addresses dynamically from a pool of available addresses (more sophisticated)

DHCP operation

- Server discovery: host sends DHCPDISCOVER msg to IP broadcast address (255.255.255.255)
- Msg broadcasted only on same network
- If server on same network, host receives its IP address
- If not, msg picked up by DHCP relay agent
- Relay agent knows address of DHCP server, forwards the msg to DHCP server and host receives its IP address
- Use of DHCP relay agent makes it possible to have fewer DHCP servers (relay agent configuration simpler than DHCP server configuration)
DHCP packet format, etc.

- **Packet format**
 - carried on top of UDP
 - based on older protocol BOOTP (unused fields)
 - client puts its hardware address in chaddr
 - DHCP server puts client’s IP address in yiaddr
 - default router info placed in options

- **Handling dynamic addresses**
 - problem: hosts may not return addresses (host crashes, is turned off, …)
 - ⇒ DHCP addresses only “leased” for a period of time
 - if lease is not refreshed, address placed back in pool

- DHCP improves manageability of network

Internet Control Message Protocol (ICMP)

- **ICMP** used for reporting errors in Internet

- **Messages**
 - Echo (ping)
 - Redirect (from router to source host if router knows of a better route to packet’s destination)
 - Destination unreachable (protocol, port, or host)
 - TTL exceeded (so datagrams don’t cycle forever)
 - Checksum failed
 - Reassembly failed
 - Cannot fragment
Virtual private networks (VPN)

- **Problem:**
 - group of isolated networks
 - geographically distant from each other
 - need to connect different networks together into a “private” network
 - e.g., company with many branch offices

- **Solution:**
 - VPN
 - connect individual networks together through a public network

- **Technologies**
 - leased virtual circuits from an ATM network operator or Frame Relay operator
 - possible with IP, but requires IP tunneling
VPN and IP tunneling

- **Problem with IP**
 - not possible to connect to Internet via router without the whole Internet also knowing about your network
- **Tunneling**
 - virtual point-to-point link btw. two nodes separated by arbitrary nof networks
 - created in R1 by providing it with address of R2
 - R1 encapsulates original packet in a new packet addressed to R2
 - packet forwarded normally inside IP network
 - R2 receives packet and strips off packet header and notices payload contains an encapsulated packet addressed to some host inside network 2
- **IP tunneling used in**
 - VPNs, Mobile IP
 - building logical networks of multicast or QoS enabled routers