 RELEARATOR MERSITY OF TECHNOLOGY Networking Laboratory 		
Control Laboration		
	Internetworking	
188lecture3.ppt	© Pasi Lassila	1
Toolectures.ppt		
S-38.188 - Computer Netwo	orks - Spring 2004	
S-38.188 - Computer Netwo	orks - Spring 2004 Problem	
S-38.188 - Computer Netwo	orks - Spring 2004 Problem orks connecting millions of users around t	he globe
S-38.188 - Computer Netwo	orks - Spring 2004 Problem orks connecting millions of users around to g networks based on any technology	he globe
S-38.188 - Computer Netwo	orks - Spring 2004 Problem Orks connecting millions of users around to a networks based on any technology	he globe
S-38.188 - Computer Netwo • Aim: Build netwo – also spanning • Problems: heter	orks - Spring 2004 Problem Orks connecting millions of users around to a networks based on any technology Togeneity and scalability	he globe
 S-38.188 - Computer Network Aim: Build network also spanning Problems: heter bridges can b heterogeneity 	orks - Spring 2004 Problem orks connecting millions of users around to g networks based on any technology orgeneity and scalability re used to connect different LANs (extended LA r: need to support different LANs, point-to-point works, different addressing formate	he globe NNs) : technologies,
 S-38.188 - Computer Network Aim: Build network also spanning Problems: heter bridges can b heterogeneity switched network scalability: ad able to bandle 	orks - Spring 2004 Problem orks connecting millions of users around to g networks based on any technology Cogeneity and scalability re used to connect different LANs (extended LA r: need to support different LANs, point-to-point vorks, different addressing formats dressing (management and configuration) and a millions of hosts	Ns) technologies, routing must be

- Internet architecture ٠
- IP service model ٠
- IP forwarding ٠
- Address translation (ARP)
- Automatic host configuration (DHCP) and error reporting (ICMP) •
- Virtual Private Networks (VPNs)

S-38.188 - Computer Networks - Spring 2004

IP Internet Terminology ٠ network = network based on LAN or extended LAN technology – internet = "network of networks" Internet = internet using IP routers = nodes connecting networks - IP = Internet Protocol, current version IPv4 (IP Version 4) H1 H2 H3 Network 2 (Ethernet) Network 1 (Ethernet) R1 R3 H7 H8 H4 Network 3 (FDDI) R2 Network 4 (point-to-point) H5 H6

IP design principles

- Cerf and Kahn's internet design principles (1974)
 - minimalism, autonomy
 - · no internal changes required to interconnect networks
 - · network is self-configuring as much as possible
 - · network can survive node and link failures
 - best effort service model
 - · packets are not offered any guarantees
 - simplifies packet processing
 - stateless routers
 - · network does not store information of any "connections" or user state
 - · routers forward autonomous packets
 - decentralized control
 - enables high survivability (in presence of, e.g., link or node failures)

S-38.188 - Computer Networks - Spring 2004

- Internet architecture
- IP service model
- IP forwarding
- Address translation (ARP)
- Automatic host configuration (DHCP) and error reporting (ICMP)
- Virtual Private Networks (VPNs)

S-38.188 - Computer Networks - Spring 2004

Service model

- Idea in the Internet service model:
 - Make it undemanding enough that IP can be run over anything
 - One of the major reasons for the success of IP technology
- Service model consists of 2 parts:
 - Model for data delivery
 - Addressing scheme

Data delivery model

- Data delivery in Internet
 - IP network connectionless (datagram-based)
 - IP network offers best-effort delivery (unreliable service)
 - packets are lost
 - · packets are delivered out of order
 - · duplicate copies of a packet are delivered
 - packets can be delayed for a long time
 - \Rightarrow "intelligence" implemented at the end hosts
 - datagram format (next slide)

S-38.188 - Computer Networks - Spring 2004

IP datagram format details

- Format aligned at 32 bit words
 - simplifies packet processing in sw
- Fields
 - Version: currently version 4 (6 is coming)
 - HLen: header length, 32 bit words (min 5)
 - TOS: type of service, used to give priorities to packets (QoS lecture)
 - Length: datagram+header length, in bytes
 - 2nd word for fragmentation/reassembly
 - TTL: time to live, nof times packet allowed to be forwarded (nof hops), default 64, detects packets caught in routing loop
 - Protocol: identifies upper layer protocols, TCP (6), UDP (17)
 - Checksum: erroneous packets discarded
 - Addresses: global Internet addresses

Options: rarely used

Fragmentation and reassembly

- Ethernet 1500 bytes, FDDI 4500 bytes, PPP 512 bytes
- Strategy
 - fragment when necessary (MTU < datagram length)
 - try to avoid fragmentation at source host
 - host sets datagram size equal to MTU of home network
 - for ATM MTU based on CS-PDU size (not cell size)
 - fragments are self-contained datagrams
 - each fragment contains a common identifier in Ident field
 - Flags (M-bit) and Offset used to guide fragmentation process
 Offset measured in 8B units
 - fragmented packet can be again re-fragmented
 - reassembly performed only at destination host
 - reassembly does not try to recover from lost fragments

13

S-38.188 - Computer Networks - Spring 2004

Fragmentation/reassembly example

Original message 1400B + 20B header

IP addressing

- Properties
 - globally unique, 32 bits
 - hierarchical: network + host
 - address identifies interface
 - end host has 1 interface
 - router has many interfaces
 - IP address \neq domain name
- Original classful addressing
 - class A, B and C networks
 - defines different sized networks
 - idea: small nof WANs, modest nof campus networks, large nof LANs
- Dot Notation
 - 32 bit addresses represented as group of 8 bit integers
 - e.g., 10.3.2.4, 128.96.33.81

15

S-38.188 - Computer Networks - Spring 2004

- IP service model
- IP forwarding
- Address translation (ARP)
- Automatic host configuration (DHCP) and error reporting (ICMP)
- Virtual Private Networks (VPNs)

IP forwarding (1)

- Some terminology:
 - forwarding:
 - process of taking a packet from input interface, and ...
 - based on the contents of the **forwarding table**, determining the correct output interface for the packet
 - routing:
 - process of constructing forwarding tables that enable efficient routing of traffic in the network (lecture 5)

17

S-38.188 - Computer Networks - Spring 2004

IP forwarding (2) Preliminaries - Every datagram contains destination's address

- Every node has a forwarding table
 - normal hosts with one interface have only **default router** configured
 - routers maintain forwarding tables with multiple entries (contructed via routing process)
 - forwarding table maps network number into next hop router number or local interface number
- Strategy
 - Any node receiving a packet (router/host) checks destination network address of datagram and ...
 - if directly connected to destination network, then forward to host
 need to map IP address to physical LAN address ⇒ ARP
 - if not directly connected to destination network, then forward to next hop router

IP forwarding example

H7

Network 4 (point-to-point)

- $H1 \rightarrow H3$: forwarding on the same network
- $H1 \rightarrow H8$; via R1 and R2

Network 2 (Ethernet)

H5

H4

R1

Network 3 (FDDI)

H6

Forwarding table of H1

NetworkNum	NextHop
1	Default (R1)
2	Interface 0
3	Default (R1)
4	Default (R1)

1 (Ethernet) H8 Forwarding table of R2

NetworkNum	NextHop
1	R3
2	R1
3	Interface 1
4	Interface 0

19

S-38.188 - Computer Networks - Spring 2004

- Bridge (+/-) ٠
 - + bridge operation simple, requires less processing
 - + transparent (no configuration needed when new nodes added to LAN)
 - restricted topology (forwarding determined by a spanning tree)
 - LANs use a flat addressing space (no hierarchical network structure)
- Router (+/-)
 - + arbitrary topologies, enables use of efficient routing algorithms for distributing traffic (helps traffic management)
 - + hierarchical addressing enables scalability:
 - · scalability requires minimization of address info stored in routers
 - routing based on network numbers \Rightarrow forwarding tables contain info on all networks, not all nodes
 - requires IP address configuration
 - packet processing more demanding
- Summary: bridges do well in small (~ 100 hosts) networks while routers are used in large networks (1000s of hosts) 20

- Internet architecture
- IP service model
- IP forwarding
- Address translation (ARP)
- Automatic host configuration (DHCP) and error reporting (ICMP)
- Virtual Private Networks (VPNs)

21

S-38.188 - Computer Networks - Spring 2004

Address translation

- Earlier, we skipped the part what to do when router/host notes that it is connected directly to the network where an arriving packet is destined.
- Need to map IP addresses into physical LAN addresses
 - destination host
 - next hop router
- Techniques
 - encode physical LAN address in host part of IP address
 - not scalable
 - table-based (maintain IP address, PHY address pairs)
 - \Rightarrow ARP

ARP details

- ARP (Address Resolution Protocol)
 - utilizes LAN's broadcast capabilities
 - each node maintains table of IP to physical LAN address bindings
 - broadcast request if IP address not in table
 - target machine responds with its physical LAN address
- ARP request contains also source addresses (physical and IP)
 - all "interested" parties can learn the source address
- Node (host/router) actions:
 - table entries timeout in about 10 minutes
 - if node already has an entry for source, refresh timer
 - if node is the target, reply and update table with source info
 - if node not target and does not have entry for the source, ignore source info
- ARP info can be incorporated in the contents of forwarding table

```
23
```

S-38.188 - Computer Networks - Spring 2004

ARP Packet Format

- Request Format
 - HardwareType: type of physical network (e.g., Ethernet)
 - ProtocolType: type of higher layer protocol (e.g., IP)
 - HLen & PLen: length of physical and upper layer addresses
 - Operation: request or response
 - Physical/IP addresses of Source and Target

C) 8	3 1	6 31			
	Hardware type = 1		ProtocolType = 0x0800			
	HLen = 48	PLen = 32	Operation			
	SourceHardwareAddr (bytes 0 – 3)					
	SourceHardwareA	Addr (bytes 4 – 5)) SourceProtocolAddr (bytes 0 – 1)			
	SourceProtocolA	ddr (bytes 2 – 3)) TargetHardwareAddr (bytes 0 –			
	TargetHardwareAddr (bytes 2 – 5) TargetProtocolAddr (bytes 0 – 3)					

S-38.188 - Computer Networks - Spring 2004

- ATMARP server
 - resolves ATM addresses to IP addresses (like ARP translates ETH to IP)
 - does not rely on broadcast
- Functionality
 - each node in a LIS sets up VC to ATMARP and registers (sends own $\langle ATM, \ IP \rangle$ address pair)
 - ARP server builds table of $\langle ATM, IP \rangle$ address pairs for all registered nodes
 - nodes make queries to ARP server
 - nodes can keep cache of $\langle ATM,\, IP\rangle$ address mappings
 - · like in traditional ARP
 - VC to a destination can be kept alive as long as needed
- Note! In Classical IP over ATM two nodes in same ATM network cannot communicate directly if they are in different subnets.

- Internet architecture
- IP service model
- IP forwarding
- Address translation (ARP)
- Automatic host configuration (DHCP) and error reporting (ICMP)
- Virtual Private Networks (VPNs)

27

S-38.188 - Computer Networks - Spring 2004

Network management and scalability

- Mechanisms in IP that enable heterogeneity and scalability
 - heterogeneity:
 - best effort service model that makes minimal assumptions on underlying network capabilities
 - common packet format, fragmentation used for networks with different MTUs
 - global address space (ARP maps physical addresses to IP)
 - scaling:
 - hierarchical aggregation of routing information (network/host number)
 - above focuses on minimizing network state info in devices
- Important also to consider management complexity as network grows
 - example: configuration of IP addresses via DHCP

Need for automatic configuration

- IP addresses need to be reconfigurable
 - Ethernet addresses hardwired onto the network adapter
 - IP address consists of network and host part
 - hosts can move between networks \Rightarrow host gets new address in each network
- Need for automated host configuration
 - hosts need other configuration info, e.g., the default router
 - configuration manually impossible (too much work and errors)
 - \Rightarrow Dynamic Host Configuration Protocol (DHCP)
- DHCP server
 - at least one DHCP server for each administrative domain
 - centralized repository for configuration info
 - two operation modes:
 - · administrator chooses host addresses and configures them to DHCP
 - DHCP manages the addresses by allocating addresses dynamically from a pool of available addresses (more sophisticated)

S-38.188 - Computer Networks - Spring 2004

DHCP packet format, etc.

- Packet format
 - carried on top of UDP
 - based on older protocol BOOTP (unused fields)
 - client puts its hardware address in chaddr
 - DHCP server puts client's IP address in yiaddr
 - default router info placed in options

Operation	НТуре	HLen	Hops				
Xid							
Se	CS	Flags					
ciaddr							
yiaddr							
siaddr							
giaddr							
chaddr (16 bytes)							
sname (64 bytes)							
file (128 bytes)							
options							

31

- Handling dynamic addresses
 - problem: hosts may not return addresses (host crashes, is turned off, ...)
 - $\ \Rightarrow$ DHCP addresses only "leased" for a period of time
 - if lease is not refreshed, address placed back in pool
- DHCP improves manageability of network

S-38.188 - Computer Networks - Spring 2004

Internet Control Message Protocol (ICMP)

- ICMP used for reporting errors in Internet
- Messages
 - Echo (ping)
 - Redirect (from router to source host if router knows of a better route to packet's destination)
 - Destination unreachable (protocol, port, or host)
 - TTL exceeded (so datagrams don't cycle forever)
 - Checksum failed
 - Reassembly failed
 - Cannot fragment

- Internet architecture
- IP service model
- IP forwarding
- Address translation (ARP)
- Automatic host configuration (DHCP) and error reporting (ICMP)
- · Virtual Private Networks (VPNs) and IP tunneling

33

S-38.188 - Computer Networks - Spring 2004

Virtual private networks (VPN)

- Problem:
 - group of isolated networks
 - geographically distant from each other
 - need to connect different networks together into a "private" network
 - e.g., company with many branch offices
- Solution:
 - VPN
 - connect individual networks together through a public network
- Technologies
 - leased virtual circuits from an ATM network operator or Frame Relay operator
 - possible with IP, but requires IP tunneling

