

Quality of Service (QoS)

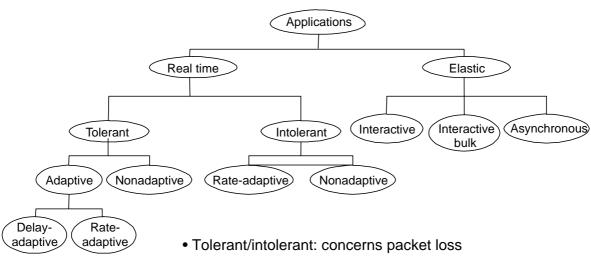
188lecture13.ppt © Pasi Lassila 1

S-38.188 - Computer Networks - Spring 2004

Outline

- Quality of Service
- Integrated Services (RSVP)
- Differentiated Services

Need for QoS

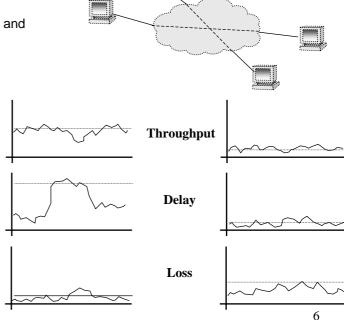

- Basic assumption: bandwidth is scarce also in the future
 - if we can install enough capacity that network can never be overloaded,
 everyone gets premium service all the time ⇒ best effort service is enough
 - if bandwidth is scarce, mechanisms are needed to control/isolate different traffic types (need a new service model to support QoS)
- Need to understand requirements from different (new) applications
 - traditional data does not (necessarily) need QoS
 - multimedia has different/varying requirements on the network
 - need for high-bandwidth links (improved coding helps)
 - timeliness of delivery, called real-time application
 - ex. voice, video, industrial control
 - multimedia needs assurance from the network that data arrives on time
 - if bandwidth is scarce, data and multimedia traffic interfere with each other
- Current state of Internet
 - best-effort model: makes no guarantees, leaves cleanup operation to edges
- QoS network = network that can provide different levels of service

S-38.188 - Computer Networks - Spring 2004

Application requirements

- Roughly, two types: real-time and non-real-time
- Non-real-time:
 - "traditional data"
 - applications like Telnet, FTP, email, web browsing
 - relies on lossless delivery (through retransmissions)
 - can work without guarantees of timely delivery of data
 - also called elastic: applications adjust to available capacity (TCP)
 - since applications are elastic, no need for QoS (just add more capacity)
- Real-time:
 - telephone, video conference, streaming audio/video
 - requires "deliver on time" assurances
 - large delay prohibits for example phone conversation
 - variations in delay can be smoothened by using application level buffers, but overall delay increases
 - may also need assurances regarding bandwidth (throughput) and loss
 - assurance must come from inside the network \Rightarrow need QoS mechanisms $_{_{A}}$

Taxonomy of applications


- Adaptive/nonadaptive: concerns delay variations
- Delay adaptive: application can adjust amount of buffering
- Rate adaptive: e.g., audio codec can change its bit rate

5

S-38.188 - Computer Networks - Spring 2004

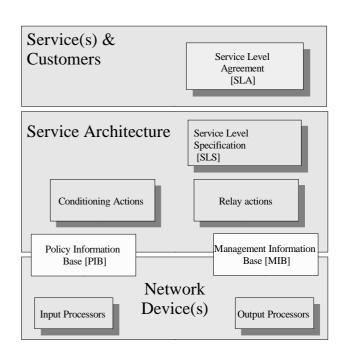
Internet QoS

- By adding Quality of Service (QoS), we are aiming to provide service differentiation to users
 - with respect to bandwidth, delay and loss characteristics
- Differentiation can be based on different criteria
 - Usage
 - Money
 - Status

Slide material from Marko Luoma

Terminology

- Connection: a dynamically formed reservation of network resources for a period of time.
 - Connection requires a state to be formed inside the network
 - State is a filter defining packets which belong into particular connection and required reservation attributes
- Flow: formed from arbitrary packets which fall within predefined filter and temporal behaviour.
 - Packets from one source to the same destination arrive to the investigation point with interarrival time less than t seconds.
 - Local knowledge, no state stored for particular flow
- Aggregate: a group of flows which have same forwarding characteristics and share link resources.
- Class: a group of connections which share same forwarding characteristics.


Slide material from Marko Luoma

7

S-38.188 - Computer Networks - Spring 2004

Approaches to QoS support

- A complete QoS architecture comprises several layers
 - here we look at basic mechanisms in the "lower layers" (no customer/user relation)
- Fine-grained approach
 - provide QoS to individual applications or flows
 - Integrated Services, RSVP (ATM)
- Coarse-grained approach
 - provide QoS to large classes of data or aggregated traffic
 - Differentiated Services

Outline

- Quality of Service
- Integrated Services (RSVP)
- Differentiated Services

9

S-38.188 - Computer Networks - Spring 2004

Elements of Integrated Services

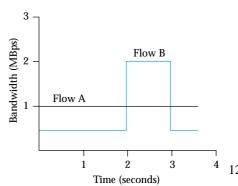
- Different functional components of the IntServ architecture
 - Service classes
 - Flowspecs
 - Admission control
 - Reservation protocol
 - Packet classifying and scheduling
- ⇒ Main question: does it scale?

Integrated Services (cont.)

- Service classes
 - guaranteed service:
 - · for delay intolerant application, packets never arrive late
 - · maximum delay guaranteed
 - controlled load:
 - for adaptive applications that run well if network is not heavily loaded
 - emulate lightly loaded network, even though the network as a whole may be heavily loaded, i.e., use queuing mechanisms to isolate controlled load traffic
 - · use admission control to limit controlled load traffic
- Mechanisms
 - telling the network about service requirements, characterizing the data (flowspec), admission control (can we provide requested service to given data), signaling / resource reservation (network routers exchange information), packet scheduling (actions of routers to meet the requirements)

11

S-38.188 - Computer Networks - Spring 2004


Flowspecs

- Two parts: TSpec and RSpec
 - TSpec: flow's traffic characteristics, information about bandwidth used by the flow
 - RSpec: service requested from network (ex. request for controlled load, or delay bound)
- Token bucket: describes the bandwidth characteristics of a source
 - parameters: token rate r and a bucket depth B

 idea: To send a byte, you need a token. To send packet of length n, you need n tokens. At start no tokens, tokens accumulate at rate r - but never

more than B tokens. Whenever you have enough tokens you can spend them in sending data.

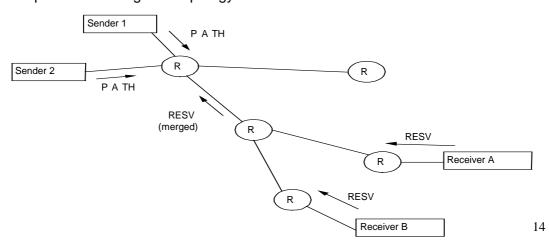
 figure: two flows with the same mean, but different token bucket

Admission and reservation

Admission control

- per flow decision to admit a new flow or not
- given TSpec and RSpec decide if desired service can be provided with available resources - a difficult task
- if a new flow is admitted, old flows may not get worse service than what it has requested earlier
- different from policing = function applied on per-packet basis to make sure that flow conforms to TSpec

Resource Reservation Protocol (RSVP)


- key assumption: should not detract from the robustness of today's Internet where routers may crash, links may go down but the end-to-end connectivity survives
- uses a soft state in routers soft state need not be explicitly deleted, it times out if not refreshed periodically (30 s refreshment period in IntServ)
- aims to support also multicast

13

S-38.188 - Computer Networks - Spring 2004

Path reservation

- Receiver-oriented approach receiver needs to know sender's TSpec and the path
- Sender sends a message with TSpec to receiver, gets reverse path as a bonus: source transmits PATH, receiver responds with RESV
- If link fails, routing creates a new PATH message and receiver sends RESV along new path, reservations on old path time out and are released ⇒ adaptation to changes in topology

Packet classification and scheduling

- Packet classification: associate each packet with appropriate reservation
 - mapping from flow-specific information in the packet header to a single class identifier that determines how the packet is handled in the queue
- Packet scheduling: manage packets in the queues to that they get the service that has been requested
 - not a trivial task...

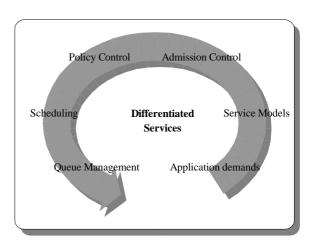
15

S-38.188 - Computer Networks - Spring 2004

Scalability problem of Integrated Services

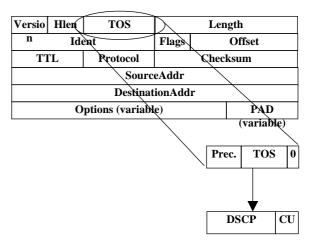
- Integrated services and RSVP enhance best-effort service model, but ISPs find that it is not the right model
- Violates the fundamental design goal of IP: scalability
 - as Internet grows, routers just need to keep up (move bits faster and deal with larger routing tables)
 - with RSVP every flow through router may have a reservation
 - ex. 2.5 Gbps full of 64-Kbps audio streams $\Rightarrow~2.5~x~10^9$ / 64 x 10^3 = 39 000 flows
 - each reservation needs a state that is stored in memory and refreshed periodically
- Need for a solution that does not require so much "per-flow" work

Outline


- Quality of Service
- Integrated Services (RSVP)
- Differentiated Services

17

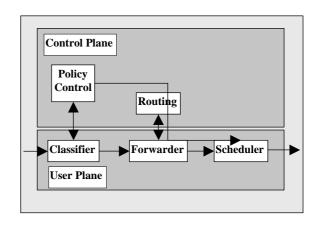
S-38.188 - Computer Networks - Spring 2004


Differentiated Services overview

- Physically, nothing more than Best Effort (well, sort of ...)
- Logically, number of parallel Best Effort networks
- Packet is destined to one of the parallel networks
 - Packet per packet processed quality of service
 - Connectionless architecture is still preserved
- Each parallel network uses same routing topology (not neccesarily)

Differentiated Services overview (cont)

- Identification of which parallel best effort network packet is destined, is coded in each packet
 - IPv4 ToS field is reformatted
 - 6 bits reserved for indicating traffic classes, DSCP (Differentiated Services Code Points) bits
- Questions:
 - Who sets the premium bit, and under what circumstances?
 - What does the router do differently when it sees a packet with the bit set?


19

Slide material from Marko Luoma

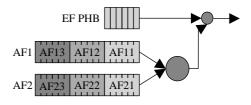
S-38.188 - Computer Networks - Spring 2004

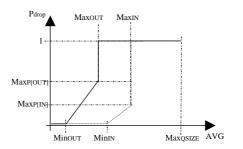
DiffServ router

- Packets are forwarded based on the destination address and class information (DSCP of the packet)
 - scheduling and queueing is done based on the class information
- DiffServ router has two additional elements in datapath compared to basic Best Effort router:
 - Traffic conditioner (TC) (Classifier in figure)
 - Per hop behavior (PHB) (Scheduler in figure)
- Control plane of DiffServ router has one extra element, i.e., policy controller, which is responsible for internal management and configuration of TC and PHB

DiffServ conditioner

- Traffic Conditioner consists of
 - Classifiers
 - · responsible for logical separation of packet streams
 - · inspects DSCP bits from packets
 - Meters
 - · responsible for rate metering of logical streams
 - · done by using for example token buckets
 - Markers
 - · responsible for actions based on metering results and predefined thresholds
 - non-conformant packets may be dropped or marked

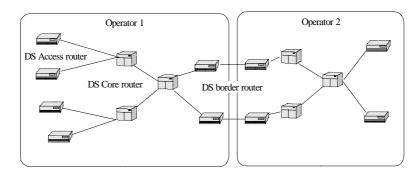

Slide material from Marko Luoma


21

S-38.188 - Computer Networks - Spring 2004

DiffServ PHB

- PHB = Per Hop Behavior
- PHB is a block containing queue management methods required to implement desired service (locally)
 - queues
 - queue space management algorithms
 - schedulers
- PHB defines forwarding actions in a router - no end-to-end specification



DiffServ network

- Workload in DiffServ is divided between two inherently different types of routers
 - edge routes
 - core routers
- Edge routers are on the domain edge and interface
 - customers
 - other ISPs

- Edge routers are responsible for conditioning actions which eventually determine logical network where packet is to be forwarded
 - edge routers set DSCP bits based on service contracts (SLAs) and traffic metering

Slide material from Marko Luoma

23

S-38.188 - Computer Networks - Spring 2004

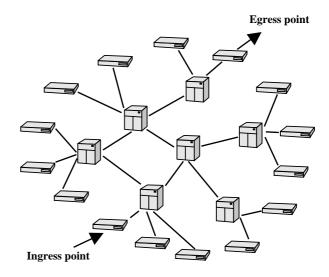
DiffServ network (cont)

- Logical network offering differentiated service is a concatenation of PHBs which interact together.
- These logical networks have target service called per domain behavior (PDB).
- Target service is a loose definition for the goal of the logical network when it is provisioned and configured in an appropriate way.
- Edge router chooses PDB for each packet which comes from the customer.
 - marks packet with DSCP of PHB used to implement PDB
- 2 PHBs have been standardized
 - EF: Expedited Forwarding
 - AF: Assured Forwarding
 - · actually collection of 4 different classes

DiffServ network (cont)

- Service decision in edge router can be based on:
 - metering result
 - · rate based
 - · token buckets
 - predefined set of filters
 - IP address i.e. customer
 - TCP/UDP port, i.e., application
 - user request
 - precoded DSCP
 - RSVP signaling

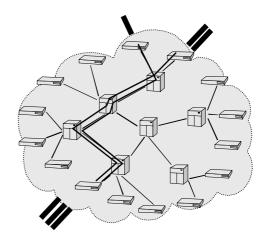
- Core routers do nothing but forwarding of packets based on the extra information in DSCP field of packets
- Requires
 - Classifier to detect DSCP fields
 - PHB to implement forwarding behaviors


Slide material from Marko Luoma

25

S-38.188 - Computer Networks - Spring 2004

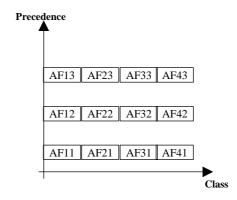
Expedited Forwarding (EF) [RFC2598]


- Leased line emulation
 - from destined ingress point to destined egress point
 - end-to-end service with
 - low loss
 - low latency
 - · low jitter
 - "premium service"

26

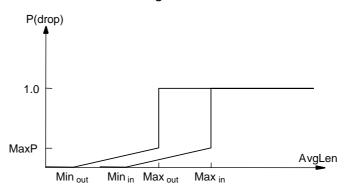
EF

- Service commitment is only assured (not guaranteed)
 - resources inside EF class are shared
 - amount of other EF traffic influences the observed delay, jitter and loss
 - path is freely chosen
 - strict delay constraint can not be held as the delay of paths are inherently different
 - no reservation is done
 - provisioning is in the key role


Slide material from Marko Luoma

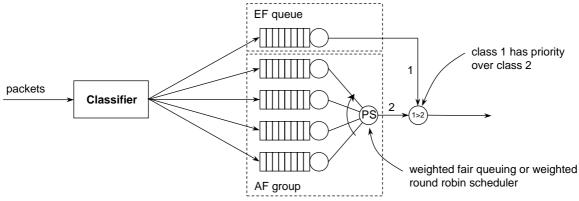
27

S-38.188 - Computer Networks - Spring 2004


Assured Forwarding (AF) [RFC2597]

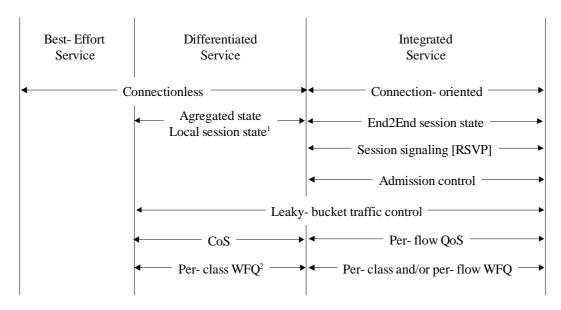
- Four independent service classes
 - all packets of a flow are destined to one of the classes
 - no association of service level between the classes
- Three precedences in each class
 - flow can have packets with different precedences (priorities)
 - order of packets in a flow is not allowed to change
 - precedence can not be used to scheduling decissions inside the class
 - precedence used to give, e.g., drop priorities

Implementing DiffServ PHBs: RIO


- One possible SIMPLIFIED implementation idea: assume two classes of traffic - "in" and "out"
- Business idea:
 - customer has contracted capacity of X bps, but sends packets with rate Y bps
 - if Y > X, some packets are marked out of profile
 - start to drop "out" packets first if there is congestion
- Two parallel RED algorithms for "in" and "out" packets = RIO
 - more than 2 classes = WRED algorithm

S-38.188 - Computer Networks - Spring 2004

Implementing DiffServ PHBs: more advanced...


- EF packets have absolute priority over AF packets
 - if too much EF traffic, may starve AF queue(s)
 - could be fair queuing, as well
- AF groups separated with fair queuing
 - for each group, to implement drop precedences (3), we could have WRED with 3 classes (instead of 2 as in the previous slide)

30

29

Comparison

¹ Border routers may keep track individual sessions if required by policing or multifield classification.

Slide material from Marko Luoma

S-38.188 - Computer Networks - Spring 2004

Remarks about Differentiated Services

- The idea of DiffServ is to combine individual flows into aggregates and to provide differentiated services inside the network (i.e., forwarding and discarding) to those.
- Under what conditions does it follow that when you serve an aggregate in a certain way, each individual flow in the aggregate gets some specific service?
 - need fair algorithms
 - open research problem
 - note: if you charge a customer (flow) for a better service, you need to provide that...
- Knowledge of the offered flow and careful setting of parameters are important in DiffServ
 - wrong parameters ⇒ your "premium" service is actually worse than your "best-effort" ⇒ careful network planning and provisioning are essential
- How to make sure that system can not be manipulated?

31

² Scheduling depends on per hop behavior [PHB]. Minimum requirement is FIFO with multilevel RED.