Congestion Control

188lecture8.ppt © Pirkko Kuusela

S-38.188 - Computer Networks - Spring 2003

Resource allocation and congestion control problem

* Problem 1: Resource allocation
— How to effectively and fairly allocate resources among competing users?
— resources = bandwidth of links + buffers on the routers
* Problem 2: Congestion
— How to react when queues overflow and packets have to be dropped?
» Allocation vs. congestion control: two sides of the same coin
— can pre-allocate resources to avoid congestion
— can control congestion if (and when) it occurs

Router | [— 3

»| Destination
_1Imm 1.5-Mbps T1 link

S-38.188 - Computer Networks - Spring 2003

Where to implement?

* Network initiated resource allocation
— proactive approach

— may be difficult (resources distributed throughout the network, need to
schedule multiple links connecting a series of routers)

* Easier approach

— let packet sources send as much data as they want, and recover from
congestion when it happens

— reactive approach

» Solution in the middle: two points of implementation
— hosts at the edges of the network (transport protocol)
— routers inside the network (queuing discipline)

S-38.188 - Computer Networks - Spring 2003

Outline

* Congestion control and resource allocation
* Queuing disciplines

« TCP congestion control algorithm

» Congestion avoidance at routers and hosts

S-38.188 - Computer Networks - Spring 2003

Resource allocation

* Resource allocation and congestion control are active areas of
research
— not isolated to one level of protocol hierarchy

— implemented patrtially in routers inside the network (queuing mechanisms),
partially in transport protocols (TCP, etc.)

* Terminology:

— resource allocation = network elements try to meet the competing demands
for link bandwidth and buffer space (main network resources)

— congestion control = efforts made by network nodes to prevent or respond
to overload conditions, keeping senders from sending too much data into a

network
— fairness = try to share the pain among all users, rather than causing great
pain to a few

— flow control = keeping a fast sender from overrunning a slow receiver

S-38.188 - Computer Networks - Spring 2003

Framework

* Network model
— packet switched network
— bottle neck link(s) exist and traffic needs control
* Underlying service model
— best-effort (assume for now)
— multiple qualities of service, Differentiated Services (later)
» Connectionless flows
— sequence of packets sent between source/destination pair
— maintain soft state at the routers
— flow either implicitly or explicitly established

Destinatio

Router -
Destinatio

2

S-38.188 - Computer Networks - Spring 2003

Framework (cont.)

* Taxonomy:
— router-centric versus host-centric, addressing the problem
* inside the network (routers)

— router decides when packets are forwarded and selects dropped
packets (drop policy)

» on the edges of the network (hosts)
— hosts observe network conditions and behave accordingly
— reservation-based versus feedback-based
» hosts ask reservations, routers allocate enough resources
* no reservations, end hosts adjust sending rates based on feedback
— window-based versus rate-based

* Above not mutually exclusive characterizations, for example:

— current Internet offers best-effort service = feedback based = primarily
host based, window based

— NextGen Internet offers QoS = combination of reservation and feedback
based = combination of host and router centric

S-38.188 - Computer Networks - Spring 2003

Evaluation

* Common criteria
— fairness, effectiveness
» Common definition for effectiveness
— Power: ratio of throughput to mean delay
— balances throughput, T, and mean delay, E[D]
— Inan M/M/1 queue, E[D] =1/ (u-A)and T=A/pu = Power=A—-A?/p
— an optimum load can be determined for Power-curve

A

Throughput/delay

Optimal
oad Load

S-38.188 - Computer Networks - Spring 2003

Fairness

» Fairness is another important issue
— no universal (mathematical) definition for fairness
— depends on how many relevant dependencies are included in the model

» All being equal aspect (in best effort networks)
— everybody gets equal service
— all resources available to everybody
— each is expected to respect others and behave accordingly
— when a new connection is added, everybody gets a little bit worse service

» Economical aspect (in QoS enabled networks)
— you should get what you pay for
— old flows should not experience harm if a new flow is accepted

S-38.188 - Computer Networks - Spring 2003

Outline

« Congestion control and resource allocation
* Queuing disciplines

» TCP congestion control algorithm

» Congestion avoidance at routers and hosts

10

S-38.188 - Computer Networks - Spring 2003

Queuing Discipline

» Choice of queuing discipline affects:

— allocation of bandwidth (which packets get transmitted) and allocation of
buffer space (which packets get discarded)

* Two mechanisms:
— scheduling (order in which packets are transmitted)
— drop policy (which packets are dropped)

e First-In-First-Out (FIFO)
— does not discriminate between traffic sources

— FIFO with tail-drop = congestion control and resource allocation pushed
out to the edges of the network (current Internet)

— problems: no protection btw. traffic flows and ill-behaved source can take all
capacity
e Priority queuing
— problem: high priority queue can starve all other queues
— high priority traffic must be regulated (e.qg., by pricing)
— used to protect most important packets (e.g., routing updates after topology

change)
11

S-38.188 - Computer Networks - Spring 2003

Fair Queuing (FQ) overview

* Problem with FIFO: traffic flows interfere with each other

* FQ: separate queue for each active flow, served in round-robin manner
— segregates traffic

— no flow captures more than Flotv 1
its fair share of capacity

— operates together with end-to-end
congestion control (i.e., per flow) Flow 2

— complication: packets of different
length = need bit-by-bit round-robin

— work conserving: server never
idle as long as there are packets

Round-robin
service

Flow 3

Floy 4

* FQ extensions
— FQ for “traffic classes” (Diff Serv)
— non-equal sharing: weighted fair queuing (WFQ)
12

S-38.188 - Computer Networks - Spring 2003

FQ algorithm

* Suppose clock ticks each time a bit is transmitted

» Definitions
— let P(i) denote the length of packet i
— let S(i) denote the time when start to transmit packet i
— let F(i) denote the time when finish transmitting packet i

= F(i) = S(i) + P(i)

* When does router start transmitting packet i?
— if before router finished packet i - 1 from this flow, then immediately after

last bitof i - 1
— if no current packets for this flow, then start transmitting when arrives (call
this A(i))

= F(@i) = MAX (F(i - 1), A(i)) + P(i)

13
S-38.188 - Computer Networks - Spring 2003
FQ algorithm (cont.)

* For multiple flows

— calculate F(i) for each packet that arrives on each flow

— treat all F(i)'s as timestamps

— next packet to transmit is one with lowest timestamp
* Not perfect: can’'t preempt current packet
» Example

Flow 1 Flow 2
Flow 1 Flow 2 Output (arriving) (transmitting) ~ Output

F=8 F=10 F=10
F=5 F=2

() (b)

14

S-38.188 - Computer Networks - Spring 2003

Outline

« Congestion control and resource allocation
* Queuing disciplines

» TCP congestion control algorithm

» Congestion avoidance at routers and hosts

15

S-38.188 - Computer Networks - Spring 2003

TCP Congestion Control

* Introduced in late 1980s after series of congestion collapses:

— sources sending packets as fast as advertised window allows = packet
drops = retransmissions = even worse congestion

— packets = TCP segments

* |dea

— assumes best-effort network (FIFO or FQ routers) where each source
determines network capacity for itself

— send packets without reservation and react to observable events
— uses implicit feedback (oberserves lost packets)
— self clocking
» TCP does not calculate time to send next packet (not rate based)

* instead, arrival stream of ACKs pace transmission (for each received
ACK, new packet can be sent)

» Challenge
— determining the available capacity in the first place
— adjusting to changes in the currently available capacity
— TCP uses only info about packet drops for feedback 16

S-38.188 - Computer Networks - Spring 2003

Additive Increase/Multiplicative Decrease

* Objective: adjust to changes in the available capacity

* New state variable per connection: CongestionWindow
— limits how much data source has in transit

— TCP source sending no faster than the slowest component (network or
destination host) can tolerate

MaxWin = MIN(CongestionWindow, AdvertisedWindow)
EffWin = MaxWin - (LastByteSent - LastByteAcked)

e ldea:
— increase CongestionWindow when congestion goes down
— decrease CongestionWindow when congestion goes up

17

S-38.188 - Computer Networks - Spring 2003

AIMD (cont)

e Question: how does the source determine whether or not the network is
congested?

* Answer: a timeout occurs
— timeout signals that a packet was lost
— packets are seldom lost due to transmission error
— lost packet implies congestion
— recall how timeout was determined adaptively (measuring RTT)

* AIMD algorithm principle
— increment CongestionWindow by one packet per RTT (linear increase)

— divide CongestionWindow by 2 whenever a timeout occurs (multiplicative
decrease)

* AIMD properties
— stability: too large a window much worse than too small

— for stability, important to approach congestion conservatively and back off
aggressively

18

S-38.188 - Computer Networks - Spring 2003

AIMD (cont)

* AIMD in practice:
increment window “a little” for each ACK
per packet interpretation:
» w denotes window size in packets
 increment by 1/w = increment by 1 for w packets
 transmitting w packets takes (roughly) one RTT
however, TCP counts window in bytes (not packets)

Increment = (MSS * MSS)/CongestionWindow
CongestionWindow += Increment

for each loss

CongestionWindow = CongestionWindow/2

Source

Destination

19

S-38.188 - Computer Networks - Spring 2003

AIMD (cont)

* Trace:
— window size vs. time
— sawtooth behavior

70
60 —
50

10

o 40 -
X 30 -
20

T T T T T T T
1.0 2.0 3.0 4.0 5.0 6.0 7.0

Time (seconds)

20

S-38.188 - Computer Networks - Spring 2003

Slow Start

e Objective
— determine the available capacity at the beginning

Source Destination

e ldea
— begin with CongestionWindow = 1 packet

— double CongestionWindow each RTT (increment by 1
packet for each ACK)

— trying to space packets out to avoid bursts

— congestion window increases exponentially (still nicer
than sending all at once as a burst)

* Used in 2 situations
— at the beginning of connection
— when connection goes dead while waiting for a timeout

* if no packets in transit, no ACKs to “clock”
transmission of new packets

S-38.188 - Computer Networks - Spring 2003

Slow Start and AIMD

e Switching from slow start to AIMD

— when transmission goes dead, TCP knows current value of
CongestionWindow (= value prior to loss / 2)

— use that as a “target” window size (= CongestionThreshold)
— use slow start up to this value, then use additive increase (AIMD)

e Trace packet

timeout
loss ./

70 — :\IIHIIMHIHH\HIIIIIIIIIIIH\H\IH\IH\IHIIHIIHI\IIHI\II TIIU\IHIHIIIII\I\IIIIHIIIHIIHHIIH |
60 |
50|
8 40
30
20
10

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

* Problem:

— during initial slow start may lose up to half a CongestionWindow’s
worth of data 29

S-38.188 - Computer Networks - Spring 2003

Fast Retransmit and Fast Recovery

* Problem: Sender Receiver
— coarse-grain TCP timeouts lead to idle Packet 1
periOdS Packet 2
— solutions: fast retransmit and fast recovery Packet 3 ACK1
Packet 4\X ACK 2
. ngt retransmit: use duplicate ACKs to Packet 5 ACK 2
trigger retransml.ssmn Packet 6
— usually 3 duplicate ACKS ACK 2
— about 20% improvement in throughput ACK 2
. Retransmit
* Fast recovery: possible to use ACKs that packet 3
are still in pipe to clock sending ACK 6
— removes some slow start phases
— halves congestion window and resumes
additive increase
23

S-38.188 - Computer Networks - Spring 2003

Improved TCP behavior and TCP variants

* Trace of TCP with fast retransmit

70 — Ty TllllIlIl\IlllllllllllllllllllllllI\IIlllllllllllllllI\ll\ll\lll\lllllllllll\lIl\Il\lIlllllllIlllI\UI\lllI TR TSR RO ROIOOOOE ORISR A, 1
60 -
50 -
m 40
¥ 30
20 -
w0l / — Tl
T | T T | T |
1.0 2.0 3.0 4.0 5.0 6.0 7.0

* TCP with fast recovery
— under ideal conditions, AIMD type saw tooth without slow starts (except initial slow start)

e TCP variants
— TCP Tahoe
< original TCP by Van Jacobson
« had basic TCP algorithms, AIMD, Slow Start, Fast Retransmit
— TCP Reno

« addition of Fast Recovery ”

S-38.188 - Computer Networks - Spring 2003

About TCP performance

* Window size and sending rate
— window size = w (in packets, upper bound on number of unacked packets)
— during one RTT at most w packets can be sent
— thus, sending rate ~ W/RTT

e TCP throughput influenced by packet loss and RTT, but how?

* Floyd’s simple deterministic model
— window grows linearly from w/2 to w and after reaching w, packet is lost

= \’2\'+(\’2V+1)+---+w:gw2 packets sent / lost packet

= p:i = rate=— :\FD !
3w RTT V3 RTTO/p

25

S-38.188 - Computer Networks - Spring 2003

TCP friendly congestion control

e TCP is the most important transport protocol

e TCP friendly: a protocol that behaves like TCP
— backs off if congestion and uses a fair share of resources
— protocol that obeys TCP long term throughput relation, T ~ k / (RTT * Vp)

* Internet requirement: new transport protocols must be TCP friendly

— applies also to application layer protocols transmitting over UDP, e.g., real
time telephony or streaming applications

— rate control implemented on top of UDP as part of application

* Non-TCP friendly: a protocol that
— takes more than its fair share of bandwidth (greedy)
— may cause fluctuations in network load and result in congestion collapse

* How to protect your protocol against non-TCP friendly greedy

protocols?
26

S-38.188 - Computer Networks - Spring 2003

Outline

« Congestion control and resource allocation
* Queuing disciplines
« TCP congestion control algorithm

» Congestion avoidance at routers and hosts

27

S-38.188 - Computer Networks - Spring 2003

Congestion Avoidance

 TCP’s strategy
— control congestion once it happens

— repeatedly increase load in an effort to find the point at which congestion
occurs, and then back off

— needs to create losses to find out network resources

« Alternative strategy
— predict when congestion is about to happen
— reduce rate before packets start being discarded
— call this congestion avoidance, instead of congestion control

* Two possibilities
— router-centric: DECbit and RED Gateways
— host-centric: TCP Vegas

28

S-38.188 - Computer Networks - Spring 2003

DEChit

* Add binary congestion bit to each packet header

* Router
— monitors average queue length over last busy + idle cycle + current cycle

Queue length

Current
time

«— Previous .|, Current____
cycle cycle

Averaging -
interval

Time

— set congestion bit if average queue length > 1
— attempts to balance throughout against delay
29

S-38.188 - Computer Networks - Spring 2003

End host actions

e Operates with TCP sources

» Destination echoes bit back to source
* Source records how many packets resulted in setting the bit

» If less than 50% of last window’s worth had bit set
— increase CongestionWindow by 1 packet

e 1f 50% or more of last window’s worth had bit set
— decrease CongestionWindow by 0.875 times

30

S-38.188 - Computer Networks - Spring 2003

Random Early Detection (RED)

* Notification is implicit
— just drop the packet (TCP will timeout or see duplicate ACKS)
— could be made explicit by marking the packet

» Early random drop

— rather than wait for queue to become full, drop each arriving packet with
some drop probability whenever the queue length (load) is “too large”

— let dropping probability depend on queue length (load)

» Designed to work with TCP sources

— if congestion detected, drop packets from some (not all) TCP sources
= some (not all) TCPs will back off

— note: with tail-drop TCP sources can become synchronized easily (all
sources increase and decrease windows at the same time)

31
S-38.188 - Computer Networks - Spring 2003
RED details
* Congestion indicator: averaged queue length
— low-pass filter, allows transient bursts in the buffer
— permanent congestion leads to increased averaged queue length
« Computation of average queue length
AvglLen = (1 - Weight) * AvgLen + Weight * SampleLen
* 0 < Weight <1 (usually 0.002)
« SampleLen is queue length each ~ Queue length
time a packet arrives
Instantaneous
\Average
Time

32

S-38.188 - Computer Networks - Spring 2003

RED Details (cont)

* Two queue length thresholds
— if AvgLen < MinThreshold then enqueue (accept) the packet
— if MinThreshold < AvgLen < MaxThreshold then
e calculate probability P
» drop arriving packet with probability P
— if AvgLen = MaxThreshold then drop arriving packet

MaxThreshold MinThreshold

AvglLen

33

S-38.188 - Computer Networks - Spring 2003

RED Details (cont)

» Computing probability P

TempP = MaxP * (AvgLen - MinThreshold) / (MaxThreshold - MinThreshold)
P =TempP /(1 - count * TempP)

— count: time in packets since previous drop, used to space drops more evenly

» Drop probability curve:

TempP
)

1.0

MaxP

T

AvgLen

|
MinThresh MaxThresh

34

S-38.188 - Computer Networks - Spring 2003

Tuning RED and problems with RED

* Tuning RED appears to be difficult, topic of current research
— probability of dropping a particular flow’s packet(s) is roughly proportional to
the share of the bandwidth that flow is currently getting

— MaxP is typically set to 0.02, meaning that when the average queue size is
halfway between the two thresholds, the gateway drops roughly one out of
50 packets.

— If traffic is bursty, then MinThreshold should be sufficiently large to allow link
utilization to be maintained at an acceptably high level

— Difference between two thresholds should be larger than the typical
increase in the calculated average queue length in one RTT; setting
MaxThreshold = 2 x MinThreshold is reasonable for traffic on today’s
Internet

* Problems with RED
— tuning is problematic (may even cause oscillations)
— more importantly, RED does not isolate ill-behaving flows (e.g., UDP flows)

— has many variants (SRED, RED+, gentle RED, FRED, etc.) a5

S-38.188 - Computer Networks - Spring 2003

TCP Vegas

» Detecting incipient congestion at end hosts
— DECKDbit and RED router based mechanisms
— could rising congestion be detected at end hosts (at transport layer)?

* Legacy TCP variants
— TCP Tahoe
— TCP Reno
— only react when congestion has already occurred

* TCP Vegas
— latest TCP variant
— additional features in congestion control

— idea: source watches for some sign that router’s queue is building up and
congestion will soon happen

 RTT grows
» sending rate flattens
— calculates the difference between the expected and the actual sending rates
36

S-38.188 - Computer Networks - Spring 2003

Key observation for TCP Vegas

Observation: gg IR S wn e n
50
o 40
Between 45and 6 scon- %
gestion window increases QU S PR S I —

T T T T T 1
05 1.0 15 20 25 3.0 35 40 45 50 55 6.0 65 7.0 75 8.0 85
but throughput stays flat Time (seconds)

= Throughput can not increase 4%
. . 900
beyond available bandwidth % 749
£ 500
300 J\[\\
= Any increase in window size 100

05 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
Time (seconds)

A vy

T T T T T T T T T T T T T T 1
05 1.0 15 2.0 25 3.0 35 40 45 50 55 6.0 65 7.0 75 80 85
Time (seconds)

B

Sending

would just increase queues
in the bottleneck router

[
o

(53]

Queue size in router

37

S-38.188 - Computer Networks - Spring 2003

TCP Vegas algorithm

e BaseRTT = minimum of all measured RTTs (usually RTT of first packet)
» If not overflowing the connection, then

ExpectRate = CongestionWindow/BaseRTT
* Source calculates sending rate (ActualRate) once per RTT

Diff = ExpectedRate — ActualRate

* Source compares ActualRate with ExpectRate

if Diff < a,
increase CongestionWindow linearly
else if Diff > b,
decrease CongestionWindow linearly
else,
leave CongestionWindow unchanged
end 38

S-38.188 - Computer Networks - Spring 2003

Algorithm (cont)

hd Paramete rs 70 FAE T TESPEESEAESEAURTIUET W00 UUE 0T TR OO OO OO OO OAOE AR SOAOE RO DMOE OO OO ODOOE OO T 0T 0 OO IAARERARE OO AR AN OO

— a=1 packet gg

4
— b =23 packets ¢ 30
10

T T T T T T T T T T T T T T T 1
05 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Time (seconds)

Expected rate

240
o 200
=3

X
2 1o 4
S 8

40 Actual rate

T T T T T T T T T T T T T T T T
05 10 15 20 25 30 35 40 45 50 55 60 65 70 75 8.0

Time (seconds)
* Even faster retransmit
— keep fine-grained timestamps for each packet
— check for timeout on first duplicate ACK
— multiplicative decrease when timeout occurs, otherwise linear decrease

39

S-38.188 - Computer Networks - Spring 2003

Evaluating new congestion control mechanisms

* Research has produced a large number of alternative congestion
control methods

» Did the algorithm get a great throughput only because it was greedy
and all other sources were nice and backed off?
— What about fairness?

— Concept of TCP friendliness should help, but still leaves a lot of design
freedom...

* How to test the algorithm?
— Can’'t do experiments in the Internet
— Testing on simulated networks or private testbed networks

— Challenge: come up with a topology and traffic loads that represent the real
Internet

— What real Internet??? There is no such thing - Internet is changing all the
time (keep that in mind when making new algorithms, you need robustness)

40

