Packet Switching Techniques

Problem

- Aim: Build larger networks connecting more users
 - also spanning different network technologies

- Shared media networks
 - limited number of stations that can be connected
 - limited geographical coverage

- Solution: switched networks
 - review general switching technologies
 - extending LANs through LAN switches (bridges, Ethernet switches)
Outline

- General switching techniques
 - Bridges and LAN switches
 - ATM technology
 - ATM in LAN

Switch
- provides star topology
- forwards (switches) packets from input port to output port
 - ports terminate link layer protocols (T1, T3, STM-n)
 - port selected based on address in packet header

Advantages
- can cover large geographic area (tolerate latency)
- can support large numbers of hosts (scalable bandwidth)
 - in Ethernet adding new hosts decreases bandwidth available to users

Scalable networks
Switching methods and addressing

• Switching/forwarding
 – systematic process of determining to which output port a packet is sent based on packet’s header
 – different techniques to achieve this
 • source routing model
 • connectionless (datagram) model
 • connection oriented (virtual circuit) model

• Requires method to identify end hosts
 – done by using addressing
 – here it is assumed hosts have globally unique addresses (telephone number, Ethernet)
 – in Internet addresses can be “reused” (discussed in lectures on routing)

Source routing

• Every packet contains full path information
 – headers of variable length
 – nodes must have all topology information (not scalable)
• Source routing can be used in Internet
Datagram switching

- Each packet contains complete destination address
 - Analogy: postal system
- No notion of connections
 - network does not store any state
- Switches (routers) maintain routing tables
 - packets routed independently
 - constructing routing tables difficult for complex networks

Virtual circuit (VC) switching

- Connection setup phase before information transfer
- VCs can be
 - permanent (nw mgmt)
 - on-demand (signaling)
- Connection set up (on-demand)
 - along forward path, each switch decides VC identifier (VCI) and forwards request
 - along reverse path, nodes inform upstream nodes of chosen VCI values
 - VCIs local identifiers, may change from link to link
 - switches maintain VCI tables and store connection state
- Information transfer
 - subsequent packets follow same path
- Connection tear down after transfer over
- Analogy: telephone call
Features of VC switching

- Source must wait full RTT before sending any data (VC set up delay)
- While the connection request contains the full address for destination, each data packet contains only a small identifier
 - per-packet header overhead smaller than in datagram switching
- If a switch or a link in a connection fails, the connection is broken and a new one needs to be established.
- Connection setup provides an opportunity to reserve resources
 - in POTS/cellular networks it is checked if time slot is available or not
 - in general, it can be checked if enough bandwidth/buffer resources exist and if users’ delay requirements can be met
- Examples: POTS network, cellular networks, Frame Relay, ATM

Features of datagram switching

- No connection set up delay
 - host can send data as soon as it is ready
 - network does not need to store connection state
- As a result, source can not know
 - if the network is capable of delivering a packet
 - if the destination host is even up
- Packets are treated independently
 - it is possible to route around link and node failures
 - important e.g. in military environment (ARPANET developed for military)
- Since every packet must carry the full address of the destination, the overhead per packet is higher than for the connection-oriented model
 - forwarding based on global addresses more resource consuming
Traffic control and switching techniques

• Congestion
 – packets arrive at a rate greater than link speed \Rightarrow buffer fills up

• Preventive traffic control
 – network attempts to ensure that congestion does not occur by allocating resources to VCs
 – circuit switching model
 – may result in poor resource utilization (if VCs exhibit random behavior)

• Reactive traffic control
 – network tries to recover from congestion as fast as possible
 – datagram switching model
 – achieves better utilization since resources are not dedicated to any particular connection, resources shared among all (statistical multiplexing)

Outline

• General switching techniques
• Bridges and LAN switches
• ATM technology
• ATM in LAN
Extending LANs

- A single LAN
 - all stations on the LAN share bandwidth
 - limited geographical coverage (Ethernet 2500 m)
 - = single collision domain
 - nof stations limited

- Techniques:
 - hubs
 - bridges
 - Ethernet switches

Hubs

- Layer 1 device
 - repeats received bits on one interface to all other interfaces (repeaters)

- Hubs can be arranged in hierarchy
 - provides star topology

- Each connected LAN referred to as LAN segment

- Hubs do not isolate collision domains
 - collisions may happen with any node on any segment

Note! Still a single LAN and collision domain
Hubs: advantages and limitations

- Hub advantages:
 - simple, inexpensive device
 - hierarchy provides graceful degradation: portions of the LAN continue to operate if one hub malfunctions
 - extends maximum distance between node pairs (100m per Hub)

- Hub limitations:
 - single collision domain results in no increase in max throughput
 - multi-tier throughput same as single segment throughput
 - individual LAN restrictions pose limits on number of nodes in same collision domain and on total allowed geographical coverage
 - cannot connect different Ethernet types (e.g., 10BaseT and 100baseT)

Simple bridges

- Connect two or more LANs with a bridge
- Simple bridge
 - all packets from a particular port forwarded on all other ports
 - level 2 forwarding/switching (does not add packet header)
 - isolates collision domains
 - Ethernet bridge uses CSMA/CD to transmit packets onto connected LANs
Learning bridges

- Idea: forward only when necessary
 - bridges maintain forwarding tables
 - datagram switching on layer 2
- Dynamic algorithm
 - bridge examines source address of each packet seen on a port
 - addresses saved in a table
 - table entries have time outs (if host moves from one segment to another)
 - broadcast frames always forwarded
- Table is an optimization; need not be complete

<table>
<thead>
<tr>
<th>Host</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>X</td>
<td>2</td>
</tr>
<tr>
<td>Y</td>
<td>2</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
</tbody>
</table>

Spanning tree algorithm

- Problem: loops in topology
 - loops used to provide redundancy in case of link failure
- Bridges run a distributed spanning tree algorithm
 - selects which bridges actively forward traffic
 - subset of network graph representing a tree that spans all nodes
 - dynamic algorithm: tree reconfigures when topology changes
 - developed by Radia Perlman
 - now IEEE 802.1 specification
Algorithm overview

- Bridges have unique ids (B1, B2, etc.)
- Bridge with smallest id is root
 - root forwards all traffic onto all ports
- Select designated bridge on each LAN
 - LAN may be connected to many bridges
 - bridge "closest" (=min nof hops) to root selected as designated bridge
 - id used to break ties
- Each bridge forwards frames over each LAN for which it is the designated bridge
- Dynamic (survives link failures), but not able to utilize multiple paths during congestion

Algorithm details

- Bridges exchange configuration messages containing
 - id for bridge sending the message
 - id for what the sending bridge believes to be root bridge
 - distance (hops) from sending bridge to root bridge
- Each bridge records current best configuration message for each port
 - identifies root with smaller id
 - identifies root with same id but with shorter distance
 - root id and distance are same but sending bridge has smaller id
- Initially, each bridge believes it is the root
- When learn not root, stop generating config messages
 - in steady state, only root generates configuration messages
- When learn not designated bridge, stop forwarding config messages
 - in steady state, only designated bridges forward config messages
- Root continues to periodically send config messages
 - If any bridge does not receive config message after a period of time, it starts generating config messages claiming to be the root
Algorithm example

- \((Y, d, X)\): Message from \(X\), at distance \(d\) from root \(Y\)
- Consider node \(B3\):
 1. \(B3\) receives \((B2, 0, B2)\)
 2. \(2 < 3\), \(B3\) accepts \(B2\) as root
 3. \(B3\) increments \(d\) and sends \((B2, 1, B3)\) towards \(B5\)
 4. \(B2\) accepts \(B1\) as root (lower id) and sends \((B1, 1, B2)\) towards \(B3\)
 5. \(B5\) accepts \(B1\) as root and sends \((B1, 1, B5)\) towards \(B3\)
 6. \(B3\) accepts \(B1\) as root, notes that \(B2\) and \(B5\) are closer to root \(\Rightarrow\) stop

Broadcast and Multicast

- Forward all broadcast/multicast frames
 - current practice
- Possible optimization for multicast:
 - learn when no group members downstream (similarly as in learning bridges)
 - typically group members are not sending any traffic
 - accomplished by having each member of group \(G\) send a frame to bridge multicast address with \(G\) in source field
 - not widely deployed
Bridges: advantages and limitations

- **Advantages:**
 - isolates collision domains (higher throughput than when using hubs)
 - can connect multiple LAN types (different Ethernets, Token Rings)
 - transparent: no need for any changes in end hosts
 - used to build network of “tens” of LAN segments within e.g. a campus area

- **Limitations:**
 - scalability:
 - spanning tree algorithm does not scale
 - broadcast does not scale (VLANs can be used to alleviate)
 - heterogeneity: not all network technologies use 48 bit addresses

- **Caution:** beware of transparency
 - in an extended LAN, there may be congestion, larger delays, ...
 - end host applications should not assume that all is behind a single LAN

Ethernet switches

- Layer 2 forwarding and filtering using LAN addresses
- Uses switching (frames can be sent in parallel between multiple ports)
- Can accommodate large number of interfaces
 - mix of 10/100/1000 Mbit Ethernets
 - shared (multiple hosts) or dedicated (single host) Ethernets
- Common configuration
 - star topology: hosts connected to switch
 - Ethernet, but no collisions!
Building a campus area network

Outline

- General switching techniques
- Bridges and LAN switches
 - ATM technology
 - ATM in LAN
History

- Traditionally: dedicated networks for different services
 - For example: telephone, telex, data, broadcast networks
 - Optimized for the corresponding service
- Need for integration of all services into a single ubiquitous network
 - “One policy, one system, universal service” (T. Vail, AT&T’s first president)
 - Early 80’s: Research on Fast Packet Switching started
- Answer from the “Telecom World”: B-ISDN
 - 1985: B-ISDN specification started by Study Group SGXVIII of CCITT
 - 1988: Approval of the first B-ISDN recommendation (I.121) by CCITT
 - idea: replace old PSTN network with new one
- Chosen implementation method: ATM
 - 1990: ATM chosen for the final transfer mode for B-ISDN by CCITT
 - 1991: ATM Forum founded
 - to accelerate development of ATM standards
 - to take into account needs of the “Computer World”

Design objectives

- Flexibility
 - integration of different types of traffic (like voice, data and video) into a single network
 - supporting any transmission rate (even variable)
 - combination of best properties of circuit and packet switching
- Guaranteed Quality of Service (QoS)
 - end-to-end delay, delay variation, cell loss ratio
- Scalability
 - suitable for both WAN and LAN
- Fastness
 - both in switching and transmission ⇒ broadband
- Supports multiple physical layers
 - typically used over SDH (SONET)
- Minimal error correction (only header protected by check sum)
 - very low bit error rates on optical links
ATM

- Connection oriented:
 - virtual connections
 set up end-to-end
 before information transfer
 - Q.2931 signaling protocol
 - resource reservation possible
 but not mandatory

- All information carried in short, fixed-length packets (**cells**)
 - along the route chosen for that virtual connection
 - statistical multiplexing at nodes
 - identifier label (local address) at cell header
 - no error detection/recovery for the information field

Technical choices

- Connection oriented
 ⇒ resource reservation possible
 ⇒ guaranteed QoS possible

- Packet switching
 ⇒ statistical multiplexing
 ⇒ flexibility (any bit rate possible) and efficiency (high utilization)

- Packets small and fixed-length (cells)
 ⇒ cell switching
 ⇒ fast switching, easier to implement in hardware
Cell

- **Cell = short, fixed-length packet**
 - Total length = 53 bytes (octets)
 - **Header**: 5 bytes
 - **GFC**, generic flow control (4 [0] bits at UNI [NNI]), (not used)
 - **VPI**, virtual path identifier (8 [12] bits \Rightarrow 256 [4096] values)
 - **VCI**, virtual channel identifier (16 bits \Rightarrow 65,536 values)
 - **PT**, payload type (3 bits)
 - 4 values (1xy) used for management functions
 - user data = 0xy, x used for EFCI (ABR), y=delineate AAL5 frames
 - **CLP**, cell loss priority (1 bit)
 - **HEC**, CRC-8 header error control (8 bits)
 - **Information field**: 48 bytes
 - carried transparently, without error detection/recovery

Virtual connections

- **Basic connection**: Virtual Channel Connection (VCC)
 - identified by the VPI/VCI pair (24 [28] bits) in each cell header
 - max. 16,777,216 [268,435,456] VCCs per physical link
 - VPI and VCI fields are local labels
 \Rightarrow reuse possible in different physical links \Rightarrow scalability
- **Aggregated connection**: Virtual Path Connection (VPC)
 - identified by the VPI field (8 [12] bits) in each cell header
 - max. 256 [4096] VPCs per physical link
 - consists of the VCCs with the same VPI (can be switched together!)
Virtual paths

- **Pros**
 - faster connection establishment
 - easier network management
 - differentiated QoS possible
 - virtual networks possible
- **Cons**
 - reduced statistical multiplexing gain

Variable vs. fixed length packets

- **No optimal length**
 - if small: high header-to-data overhead
 - but e.g. traditional telephone calls generate small sized packets
 - ATM intended to carry all traditional voice traffic effectively
 - if large: low utilization for small messages
 - but, in computer networking packets are typically large

- **Fixed length packets easier to switch in hardware**
 - in 80's a lot of effort put into designing hw for switching fixed size packets
 - simpler to implement than variable size packet switching
 - can utilize parallelism in switch design (switches operate based on "slotted" time)
Big vs. small packets (1)

- Small improves queue behavior
 - finer-grained pre-emption point for scheduling link
 - maximum packet = 4KB
 - link speed = 100Mbps
 - transmission time = 4096 x 8/100 = 327.68us
 - high priority packet may sit in the queue 327.68us
 - in contrast, 53 x 8/100 = 4.24us for ATM
 - near cut-through behavior
 - two 4KB packets arrive at same time
 - link idle for 327.68us while both arrive
 - at end of 327.68us, still have 8KB to transmit
 - in contrast, can transmit first cell after 4.24us
 - at end of 327.68us, just over 4KB left in queue

Big vs. small packets (2)

- Small improves latency (for voice)
 - voice digitally encoded at 64KBps (8-bit samples at 8KHz)
 - need full cell’s worth of samples before sending cell
 - example: 1000-byte cells implies 125ms per cell (too long)
 - smaller latency implies no need e.g. for echo cancellors

- ATM compromise: 48 bytes = (32+64)/2
 - Europe: 32 bytes
 - USA: 64 bytes
Segmentation and reassembly (SAR)

- Problem: higher layer frames longer than 48 bytes
 - frames need to fragmented and reassembled
- ATM Adaptation Layer (AAL)
 - AAL 1 and 2 designed for applications that need guaranteed rate (e.g., voice, video)
 - AAL 3/4 designed for packet data
 - AAL 5 is an alternative standard for packet data

AAL5

- Problems with AAL 3/4
 - complex, too much protocol overhead
 - 44 bytes of 48 available for splitting AAL 3/4 frame into cells
 - 4 bytes used for segmentation header (enables multiplexing, CRC-10)
- AAL 5
 - all 48 bytes available for AAL 5 frame segmentation, no multiplexing
 - in practice, AAL 5 is used (AAL 3/4 not)
 - CS-PDU format (CS-PDU = AAL 5 frame, CS=Convergence Sublayer)

<table>
<thead>
<tr>
<th>Data</th>
<th>Pad</th>
<th>Reserved</th>
<th>Len</th>
<th>CRC-32</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>16</td>
<td>32</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- pad so trailer always falls at end of ATM cell
- length: size of PDU (data only)
- CRC-32 (detects missing or misordered cells)
- Cell Format
 - end-of-PDU bit in Type field of ATM header
Outline

- General switching techniques
- Bridges and LAN switches
- ATM technology
 - ATM in LAN

Historical perspective

- ATM also intended for LAN environment
 - switched technology offers better scalability
 - aimed to operate at link speeds of 155 Mbps and above (faster than 10BaseT)
 - idea: ATM replaces Ethernet and Token ring
 - …but 100BaseT Ethernet and Ethernet switches appeared (almost same speed as ATM)

- ATM in the LAN backbone
 - does not have distance limitations
 - link speeds above 622 Mbps
 - hosts connected to Ethernet switches, ATM in backbone
 - … but now Gigabit Ethernet competes with ATM in backbone
Problems with ATM in LAN

- Broadcast (and multicast) crucial for LAN operation
 - easily implemented in shared media LANs (Ethernet)
 - but, ATM is connection oriented and switched in nature ...
 - broadcast important for ARP (Address Resolution Protocol)
- Two approaches
 - ATMARP: does not make assumptions on existence of broadcast
 - ATM LANE (LAN Emulation): makes ATM behave like shared media LAN
 - adds number of functional entities to network to make an illusion of
 shared medium, does not add functionality to ATM switches
 - LEC = LAN Emulation Client (host connected to ATM LAN)
 - Servers: LECS (LAN Configuration Server), LES (LANE Server), BUS
 (Broadcast and Unknown Server)
- Problem with addresses:
 - ATM uses NSAP or E.164 addresses, different than 48 bit MAC addresses
 - to make ATM work in LAN environment each ATM device needs a MAC
 address also

Overview of LANE (1)

- Joining the LAN and setting up broadcast
 - new client (H2) contacts LECS using “a well known” VC (1)
 - H2 provides LECS with its address and receives configuration information
 about the LAN and learns ATM address of LES
 - H2 contacts LES and provides its ATM address and MAC address, H2 learns
 ATM address of BUS (2)
 - BUS maintains single point-to-multipoint connection connecting all
 registered clients
 - H2 signals to BUS (3)
 - H2 is added to the multipoint connection (4)
Overview of LANE (2)

• Delivery of unicast traffic to a particular MAC address
 – H2 wants to send to H1
 – H2 does not know ATM address of H1
 – first packets sent directly to BUS (1)
 – H2 sends request to LES, LES returns ATM address corresponding to the MAC address (2)
 – H2 signals a VC directly to H1 (3)
 – old unused VCs time out and are disconnected automatically