Link Layer (L2) Review

Problem

- How to connect 2 (or more) computers directly to each other?
 - physical cable?
 - bit encoding, framing, error detection?
 - reliable transfer mechanisms?
 - what if several hosts share the transmission medium?
Outline

- Host HW and physical link technologies
 - Encoding
 - Framing
 - Error detection/correction
 - Reliable transmission
 - Multiple access techniques
 - Ethernet
 - Token ring and FDDI
 - Wireless

Network nodes

- Node types: end hosts, routers
 - end hosts e.g. PCs, routers special purpose hw
- End host structure
 - Memory
 - packets waiting stored in memory
 - finite and (possibly) scarce
 - Network adapter
 - connects host to physical medium
 - delivers packets from memory to physical link
 - small buffer between bus i/f and link i/f
 (I/O bus and link operate at different speeds)
 - L2 functions implemented in adapter hw
 - Device driver
 - manages the adapter
- End hosts run at memory speeds, not processor speeds!
 - memory delay halves every 10 yrs, processor speeds double every 1.5 yrs
Physical link technologies

- Variety of physical media:
 - twisted pair (telephone line)
 - coaxial cable (TV cable)
 - optical fiber
 - wireless (infrared, microwave)

- Selection of media based on type of network
 - connections within a building/campus area
 - connections across a city/country
 - “last mile” connections

Short/long distance connections

- Connecting inside a building/campus area
 - string the nodes together by cable
 - cable type depends on technology
 - category 5 twisted pair is common indoor, fiber between buildings

- Connecting across the country/city
 - cannot install cable yourself ⇒ leased lines
 - rent a “logical connection” from a service provider (telephone company)

<table>
<thead>
<tr>
<th>Cable</th>
<th>Bandwidth</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cat 5 twisted pair</td>
<td>10-100 Mbps</td>
<td>100 m</td>
</tr>
<tr>
<td>Thin net coax</td>
<td>10-100 Mbps</td>
<td>200 m</td>
</tr>
<tr>
<td>Thick net coax</td>
<td>10-100 Mbps</td>
<td>500 m</td>
</tr>
<tr>
<td>Multimode fiber</td>
<td>100 Mbps</td>
<td>2 km</td>
</tr>
<tr>
<td>Single mode fiber</td>
<td>100-2400 Mbps</td>
<td>40 km</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Service</th>
<th>Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>1.920 Mbps</td>
</tr>
<tr>
<td>E3</td>
<td>34.3 Mbps</td>
</tr>
<tr>
<td>STM-1</td>
<td>155 Mbps</td>
</tr>
<tr>
<td>STM-4</td>
<td>620 Mbps</td>
</tr>
<tr>
<td>STM-16</td>
<td>2.4 Gbps</td>
</tr>
</tbody>
</table>
“Last mile” links (1)

- “Last mile”: last leg from home/office to a service provider’s network
- POTS
 - dial up modem connections up to 56 kbps, uses twisted pair, cheapest
 - technology at its bandwidth limit
- ISDN
 - offers two 64 kbps channels (2B+D) = max. 128 kbps
 - uses twisted pair, requires separate terminal adapter at home
 - late 70’s vision: nobody needs more than ISDN!
- xDSL (DSL=Digital Subscriber Line): collection of technologies that offer more bandwidth than ISDN over standard twisted pair
 - ADSL (Asymmetric DSL)
 - downstream (nw → user) speed 1.5 Mbps (5.5 km) - 8.4 Mbps (2.7 km)
 - upstream (user → nw) speed 16 kbps - 640 kbps
 - VDSL (Very high data rate DSL)
 - higher bw than ADSL, shorter distances (requires extra hw in subscriber loop)
 - 12.96 Mbps (1.4 km) - 55.2 Mbps (0.3 km)

“Last mile” links (2)

- Cable modems
 - alternative to xDSL, popular in the States
 - uses existing cable TV network (reaches 95% of homes in US)
 - asymmetric bw: up to 40 Mbps downstream, 20 Mbps upstream
 - shared channel: cable TV network is a tree structured distribution network
 - problems (congestion) when the number of users in the tree grows
- Wireless links
 - dial up modem connections over GSM
 - low orbit satellite network
 - Teledesic: 288 satellites connected with 155 Mbps wireless links each offering 1440 16 kbps channels (128 channels offer 1.92 Mbps)
 - WLAN & Bluetooth provide wireless access at rates 1-54 Mbps (depending on standard version) for distances of about 10 m (office room environment) in the 2.4 or 5 GHz frequency band
 - infrared and microwave point-to-point links
Outline

- Host HW and physical link technologies
- Encoding
 - Framing
 - Error detection/correction
 - Reliable transmission
 - Multiple access techniques
 - Ethernet
 - Token ring and FDDI
 - Wireless

Encoding (1)

- Task:
 - encode the user’s bits into electrical (optical) signals, decoding is the reverse process
- NRZ (Non-return to Zero)
 - encoding: 0 = low signal amplitude, 1 = high signal amplitude
 - long strings of consecutive 1’s or 0’s create problems
 - signal value stays the same for a long time period
- Problems with NRZ:
 - Clock recovery: during a string of 0’s or 1’s, time synchronization information is lost (signal changes used to synchronize the receiver’s clock)
 - Baseline wander
 - reception of 1 or 0 is done by comparing against an average signal level that is measured
 - long string of 1’s results in an increase in the average ⇒ higher probability for false detection
Encoding (2)

- NRZI (non return to zero inverted)
 - encode a transition for each 1, do nothing for 0’s
 - synchronization problem with consecutive 0’s
- Manchester
 - XOR operation of the signal and clock ⇒ transition for every bit
 - problem: 2 pulses used for every transmitted bit ⇒ 50% efficiency
- 4B/5B
 - encode each received 4 bit pattern with 5 bit patterns ⇒ 80% efficiency
 - each pattern chosen s.t. at most 3 consecutive 0’s possible
 - each 5 bit pattern encoded with NRZI

Encoding (3)

<table>
<thead>
<tr>
<th>Bits</th>
<th>0 0 1 0 1 1 1 1 0 1 0 0 0 0 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRZ</td>
<td></td>
</tr>
<tr>
<td>Clock</td>
<td></td>
</tr>
<tr>
<td>Manchester</td>
<td></td>
</tr>
<tr>
<td>NRZI</td>
<td></td>
</tr>
</tbody>
</table>
Outline

- Host HW and physical link technologies
- Encoding
- Framing
 - Error detection/correction
 - Reliable transmission
 - Multiple access techniques
 - Ethernet
 - Token ring and FDDI
 - Wireless

Framing

- Problem:
 - applications generate (variable length) packets (called frames at layer 2)
 - how are the individual frames distinguished by end hosts?
- General approach
 - add extra uniquely distinguishable parts to the packet to such that start of frame (SOF) and end of frame (EOF) become uniquely identifiable
 - Framing error: frame boundary information is lost or corrupted
- Framing performed at every protocol layer
- Framing needed
 - for encapsulating higher layer protocol inside frame of lower layer
 - for multiplexing low speed connections onto high speed links
 - for multiplexing multiple higher layer protocols into lower layer frame
Sentinel approach to framing

- **Sentinel approach**
 - beginning and end of frame are signaled by use of a unique bit pattern, e.g., 01111110
- **Byte (bit) stuffing**: unique flag pattern can occur in the payload
 - sender: if 01111110 is part of data, add (stuff) extra 01111110 in the stream
 - receiver: if 01111110 is seen twice, remove the second
 - Result: size of frames depends on the data
- **Byte oriented (e.g. PPP) or bit oriented (e.g. HDLC)**
 - PPP: commonly used in dial-up modem connections
 - Flag=01111110, Address and Control contain default values, Protocol used for identifying higher level protocols
 - During PPP connection set up some protocol elements are negotiated, also configuration information is exchanged

Other approaches to framing

- **Byte counting (e.g. DDCMP)**
 - include length of the payload in a field preceding actual payload
- **Clock based framing (SONET, SDH)**
 - addresses both encoding and framing, also multiplexing of lower bit rate links onto a single high bit rate link
 - fixed length frames (125 µs long)
 - no byte stuffing
 - frame begins with “a known” bit sequence
 - receiver expects this pattern to repeat every 125 µs (at the beginning of each frame)
 - if this happens enough often, receiver is synchronized and can interpret the frame
Outline

- Host HW and physical link technologies
- Encoding
- Framing
- Error detection/correction
- Reliable transmission
- Multiple access techniques
 - Ethernet
 - Token ring and FDDI
 - Wireless

Error detection vs. correction

- Method: add k redundant extra bits computed from the original message to detect (and to correct) bit error(s)
- Error detection
 - idea: $k \ll n$ ($n =$ length of the original message)
 - In Ethernet $k = 32$ and $n = 1500 \times 8 = 12000$
 - bit error patterns can be detected but not corrected
 - reasonable if packets (frames) are corrupted relatively seldom
 - in modern optical networks bit error rates $\sim 10^{-12}$
 - corrupted frames are retransmitted (and with high probability correctly)
- Error correction
 - now: $k \sim n$
 - what errors can be corrected depends on the used algorithm (codes) and k
 - useful in an environment where packets are frequently corrupted
 - in wireless, bit error rates are often $\sim 10^{-6} - 10^{-4}$
 - \Rightarrow retransmitted frames encounter errors with high probability!
CRC (Cyclic Redundancy Check)

- One of the most common error detection techniques
 - used in almost all L2 protocols (HDLC, Ethernet, Token Ring, ATM)
- The method:
 - Let \(C(x) \) = divisor polynomial of degree \(k \), e.g., \(x^3 + x + 1 \)
 - Let \(T(x) \) = original message with \(k \) zeros appended
 - Divide \(T(x) \) with \(C(x) \) (modulo 2 logic), subtract the remainder from \(T(x) \)
 - the result is now exactly divisible with \(C(x) \)
 - Thus, if e.g. original message and the remainder are transmitted in a frame,
 the receiver can determine if the message is corrupted
 - Advantage: can be implemented efficiently in hardware using shift registers
- General error detecting properties of \(C(x) \) with degree \(k \)
 - All single bit errors if \(x^k = x^0 = 1 \)
 - All double bit errors if \(C(x) \) has a factor with at least three terms
 - Any odd number of errors if \(C(x) \) contains the term \((x+1) \)
 - Any burst error for which the length of the burst is less than \(k \) bits (most burst errors of larger length can also be detected)

Internet checksum

- CRC provides strong protection and is used in (almost) all L2 protocols
- Thus, in Internet (L3 and L4) protocols strong protection not necessary
- Simple checksum based method is used in Internet
- Method:
 - A message is viewed as a sequence of 16 bit integers
 - Add all these up using ones complement arithmetic
 - Take ones complement of the result ⇒ checksum
 - Ones complement with 4 bits
 - A negative integer \(-x\) is represented by the complement of \(x \)
 - \(\{+5 = 0101, -5 = 1010\}, \{+3=0011, -3 = 1100\} \)
 - Carry bit: \(-5 + -3 = 1010 + 1100 = 0110 + \text{carry bit} = 0111\)
Outline

- Host HW and physical link technologies
- Encoding
- Framing
- Error detection/correction
- Reliable transmission
 - Multiple access techniques
 - Ethernet
 - Token ring and FDDI
 - Wireless

Reliable transmission

- Packets may be corrupted or simply dropped (due to congestion)
- In packet networks lost packets are retransmitted
- How is this achieved?
 - Acknowledgements (ACKs):
 • short control packet from the receiver
 • acknowledges a successfully received packet
 - Time outs:
 • sender waits for a “reasonable” time for an ACK
 • if an ACK is not received, a time out occurs ⇒ packet is retransmitted
- Two ARQ (Automatic Repeat Request) algorithms
 - Stop-and-wait
 - Sliding window
Stop-and-wait

- The sender stops after each packet and waits for an ACK (a)
 - different error situations in b,c,d
- Problem: keeping the pipe full
 - \[C = 10 \text{ Mbps}, \text{RTT} = 30 \text{ ms} \Rightarrow \text{RTT} \times C = 38 \text{ KB}\]
 - sending only one 1500 B packet at a time gives utilization of \(\frac{1.5}{38} = 4\% \)
 - simple solution: to send for example 3 frames, use 3 stop-and-wait processes in parallel (concurrent logical channels, used in ARPANET)

Sliding window

- Algorithm for handling multiple outstanding ACKs
 - the method used in Internet retransmission schemes
- An upper bound is set on the number of outstanding ACKs
 - called a window
 - protocol ensures that the number of unacknowledged packets is less than the window size
- In practice, bandwidth-delay product varies over time
 - need to manage the window size dynamically
 - TCP with congestion control
Sliding window - sender side operations

- A sequence number (SeqNum) is assigned to each frame
 - assume for the time being that SeqNum can grow infinitely large
- Three state variables
 - Send Window Size (SWS) (upper bound on nof outstanding ACKs)
 - Last Acknowledgement Received (LAR)
 - Last Frame Sent (LFS)
- Sender maintains: LFS - LAR ≤ SWS

\[
\text{LFS} \quad \text{LAR} \quad \text{\ldots} \quad \leq \text{SWS} \quad \text{\ldots}
\]

- Sender’s actions
 - For each ACK, LAR is incremented and a new packet can be transmitted
 - For each packet, a timeout timer is associated (retransmission if time expires)
 - Thus, sender must buffer upto SWS amount of packets

Sliding window - receiver side operations

- Three state variables
 - Receive Window Size (RWS) (bound on out of order frames)
 - Largest Acceptable Frame (LAF)
 - Last Frame Received (LFR)
- Receiver maintains: LAF - LFR ≤ RWS

\[
\text{LFR} \quad \text{LAF} \quad \text{\ldots} \quad \leq \text{RWS} \quad \text{\ldots}
\]

- Receiver’s actions:
 - If SeqNum ≤ LFR or SeqNum > LAF, the frame is discarded
 - If LFR < SeqNum ≤ LAF, the frame is accepted
 - If SeqNum = LFR + 1, LFR is incremented and frame SeqNum is ACKed
 - If SeqNum > LFR + 1, no ACK is generated until the missing frames arrive (sends cumulative ACKs)
Sliding window operation

- If packets arrive in order and none are lost
 - receiver keeps increasing its LFR and acknowledges each packet
 - sender receives a flow of ACKs and sends a new packet for each ACK
 - pipe stays full
- If packets arrive out of order at the receiver
 - the receiver does not generate ACKs
 - the sender is throttled (cannot send new packets)
 - if missing packets are lost, sender’s timeout mechanism takes care of retransmissions
 - sending NAKs not useful
 - how quickly the timeout mechanism detects the missing packet becomes important
 - sending selective ACKs (ACKs for each received packet even if they are out of order) is possible but increases protocol complexity

Finite sequence numbers

- In practice, SeqNum is a field in the protocol header \(\Rightarrow \) SeqNum finite
 - sequence numbers bound to wrap around during operation
- Problem:
 - How big must MaxSeqNum be in order to guarantee that receiver never mistakes a received SeqNum to the previous “round’s” same SeqNum?
- Answer: if SWS = RWS, then SWS \(\leq (\text{MaxSeqNum} + 1) / 2 \)
 - SWS must be smaller than half of the nof values of MaxSeqNum
 - Interpretation: assume MaxSeqNum = SWS + 1 and SWS = RWS = 7
 - in the worst case sender sends frames 0, ..., 6
 - assume that all ACKs for the packets are lost
 - sender retransmits again all frames 0, ..., 6
 - receiver is expecting frames 7, 8, 0, 1, ..., but receives 0, ..., 6 interpreting them as belonging to the “next round”!
 - MaxSeqNum must be big enough that all retransmitted frames still “fit” in the same round, i.e., in this case SeqNo range = \{0, ..., 13\}
Outline

- Host HW and physical link technologies
- Encoding
- Framing
- Error detection/correction
- Reliable transmission
- Multiple access techniques
 - Ethernet
 - Token ring and FDDI
 - Wireless

Ethernet overview

- History
 - developed by Xerox in mid 70s, roots in Aloha packet-radio network
 - standardized by Xerox, DEC, and Intel in 1978, (later IEEE 802.3 standard)
- CSMA/CD
 - carrier sense: nodes detect if line is idle or busy
 - multiple access: multiple stations share the bandwidth
 - collision detection: stations listen to their transmission and detect collisions
- Bandwidth: 10Mbps, 100Mbps, 1Gbps
- Ethernet segment (different coaxial cables, max 500 m):
 - transceiver: detects if line is idle, sends the electrical signals
 - adapter: implements the Ethernet MAC protocol (in hardware)
Collision domain

- Using max 4 repeaters at most 5 segments can be connected
 - max 2500 m distance between any two nodes
- Hubs can be used to create a star (hierarchical) topology
 - used in 10BaseT networks with twisted pair cabling
 - 10 = 10 Mbit/s, Base = Baseband system, T=twisted pair (< 100 m)

- Repeaters and hubs are layer 1 devices connecting Ethernet segments
 - data transmitted by any host on that Ethernet is received by all hosts
 - all compete for the same resource
 - all hosts are in the same collision domain

Ethernet frame format and addresses

- Frame Format (field lengths in bits)
 - max body length 1500 bytes
 - min body length 46 bytes (long enough to detect a collision)

- Addresses
 - unique, 48-bit unicast address assigned to each adapter
 - example: 8:0:e4:b1:2
 - broadcast: all 1s
 - multicast: first bit is 1

- Receiver functionality simple:
 - adapter forwards to the host all unicast traffic directed to it, all broadcast traffic and the multicast traffic it has subscribed to

- Problem: Distributed algorithm that provides fair access
 - Media Access Protocol (MAC)
Transmit algorithm (1)

- No centralized access control
 - collisions occur and they are detected

- If line is idle…
 - send immediately
 - upper bound message size of 1500 bytes
 - must wait 9.6 μs between back-to-back frames

- If line is busy…
 - wait until idle and transmit immediately
 - called 1-persistent (special case of p-persistent)
 - p-persistent: if line is idle, transmit with probability p
 - idea: many hosts may be waiting for the line to become idle and we do not want them all to start transmitting (minimizes prob. of collisions)

Transmit algorithm (2)

- If collision…
 - jam for 32 bits, then stop transmitting frame
 - minimum frame is 64 bytes (header + 46 bytes of data)
 - long enough to fill a 2500 m Ethernet operating at 10 Mbps
 - delay and try again
 - 1st time: 0 or 51.2μs
 - 2nd time: 0, 51.2, or 102.4μs
 - 3rd time: 102.4, 153.6μs
 - nth time: k x 51.2μs, for randomly selected k=0..2n - 1
 - give up after several tries (usually 16)
 - exponential backoff
Ethernets in practice

- Performance
 - Ethernet works efficiently in light load
 - 30% load is considered a heavy load and too much of Ethernet’s capacity is wasted on collisions
 - no flow control in Ethernet (flow control implemented in IP protocols)
- No of hosts
 - theoretical maximum 1024 hosts
 - in reality most have < 200 hosts
- Length
 - theoretical maximum 2500 m with round-trip delay 51.2 µs
 - in practice, delay is closer to 5 µs
- Ethernet advantages:
 - easy to manage and administer (add/remove hosts, no route configuration)
 - cheap

Outline

- Host HW and physical link technologies
- Encoding
- Framing
- Error detection/correction
- Reliable transmission
- Multiple access techniques
 - Ethernet
 - Token ring and FDDI
 - Wireless
Token ring overview

- Examples
 - 16Mbps IEEE 802.5 (based on earlier IBM ring)
 - 100Mbps Fiber Distributed Data Interface (FDDI)

- Similarities with Ethernet
 - shared medium with a distributed access algorithm
 - all nodes see all frames

- Differences to Ethernet
 - ring topology
 - access to the ring is tightly controlled (tokens)
 - NOT random access

Token ring operation

- Idea
 - frames flow in one direction: upstream to downstream
 - special bit pattern (token, length 24 bits) rotates around ring
 - if a node has frame(s) to transmit and sees the token
 - node inserts its frame into the ring
 - each node forwards the frame, receiver copies it
 - node can transmit for upto THT (Token Holding Time, default 10 ms)
 - release token after done transmitting
 - immediate release (token is inserted before last frame has been sent)
 - delayed release (token is inserted after last frame has been sent)
 - remove your frame when it comes back around
 - stations get round-robin service

- Additional features
 - supports unicast, broadcast and multicast addresses
 - reliable frame delivery: receiver sets A and C bits if frame OK
 - supports priorities
Token ring maintenance

- Designated monitor station guards operation of the ring
 - any station can be the monitor
 - healthy monitor issues regular control messages
 - if control msgs are not received for some period of time
 - any station can try to become new monitor by issuing “claim token” msg
 - new monitor is elected based on “highest address” rule

- Monitor functions
 - adds extra bits of delay if necessary (ring must be at least 24 “bits long”)
 - makes sure that token is not lost (host crash, bit errors, ...)
 - maximum rotation time timer (NumStations x THT + RingLatency)
 - check for corrupted or orphaned frames
 - detection of dead stations

Physical properties and frame format of token ring

- Properties:
 - Robustness:
 - in a ring, if any station fails the ring is inoperable
 - solution: an electromechanical relay in the network adapter is open as long as the station is operating
 - data rate: 4 Mbps (old version) or 16 Mbps
 - bit encoding: Manchester
 - upto 260 stations (250 in IEEE 802.5)
 - physical medium: twisted pair

- Frame Format
 - 48 bit addresses (as in Ethernet)
 - frame status contains the A and C bits
FDDI overview

• Dual ring
 – second ring not used in normal operation
 – if a node fails or a single link fails, ring loops back to form a complete ring

• Dual ring expensive
 – SAS (single attachment station) possible
 – multiple SAS connected to a DAS (dual attachment station) (=concentrator)
 – in case of SAS failure, DAS bypasses the faulty SAS

• Physical properties
 – at most 500 stations
 – max cable length 200 km (100 km ring length)
 – physical media: coax, twisted pair, fiber
 – encoding: 4B/5B

• Frame format (almost) the same as in Token ring

Timed Token Algorithm (1)

• Algorithm for controlling token holding time: Timed Token Algorithm
 – ensures that every station gets to transmit within a defined period of time

• Token Holding Time (THT)
 – upper limit on how long a station can hold the token, configured value
 – same as in Token ring

• Token Rotation Time (TRT)
 – how long it takes the token to traverse the ring
 – TRT <= ActiveNodes x THT + RingLatency

• Target Token Rotation Time (TTRT)
 – agreed-upon upper bound on TRT
 – decided during token generation (ring initialization)
Timed Token Algorithm (2)

- Each node measures TRT between successive tokens
 - if measured-TRT > TTRT: token is late so don’t send
 - if measured-TRT < TTRT: token is early so OK to send
- Problem:
 - an upstream node with lot of data to send hogs all bw before the token reaches downstream nodes which might have delay critical data
- Two classes of traffic
 - synchronous: can always send
 - asynchronous: can send only if token is early
- Problem: synchronous traffic can take all bw
- Solution: max TTRT amount of synch data can be sent during token round
 - nodes first send TTRT worth of asynchronous data and then other nodes send TTRT worth of synchronous data
 - worst case: measured-TRT can be 2xTTRT between seeing token
 - in the next token round, token is already late and asynchronous data cannot be sent ⇒ back-to-back 2xTTRT rotations not possible

Token maintenance

- Lost Token
 - no token when initializing ring
 - bit error corrupts token pattern
 - node holding token crashes
 - token loss monitored by all stations
 - stations should see valid frames or tokens every now and then
 - if nothing is seen for 2.5 ms, node issues a “claim” msg
- Generating a Token (and agreeing on TTRT)
 - execute when joining ring or suspect a failure
 - send a claim frame that includes the node’s TTRT bid
 - when receive claim frame, update the bid and forward
 - if your claim frame makes it all the way around the ring:
 - your bid was the lowest
 - everyone knows TTRT
 - you insert new token
Outline

• Host HW and physical link technologies
• Encoding
• Framing
• Error detection/correction
• Reliable transmission
• Multiple access techniques
 – Ethernet
 – Token ring and FDDI
 – Wireless

Wireless LANs

• (Original) Wireless LAN standard: IEEE 802.11
 – limited geographical coverage
 – defines MAC protocol suitable for wireless environment
 – additional features: real time support, power mgmt, security

• Physical properties
 – bandwidth: 1 or 2 Mbps
 – physical media
 • 2 media based on spread spectrum radio operating in 2.4GHz frequency range
 • diffused infrared (sender and receiver do not need to have line of sight contact),
 distance limitation approx. 10 m

• New standards
 – IEEE 802.11a and IEEE 802.11b
 – Higher data rates: 10 Mbit/s upto 54 Mbit/s
 – New frequency range: 5 GHz
Spread spectrum techniques (1)

- General principles
 - signal spread over wider frequency band than required
 - minimizes impact of interference from other devices
 - originally military technology, designed to thwart jamming
 - transmission “coded” such that the signal appears as noise to an observer not knowing the “key”
 - possible to trade off capacity and amount of noise
- Frequency hopping
 - signal transmitted over random sequence of frequencies
 - sender and receiver share...
 - pseudorandom number generator
 - seed
 - receiver can hop frequencies in sync
 - 802.11 uses 79 x 1MHz-wide frequency bands

Spread spectrum techniques (2)

- Direct sequence
 - for each bit, send XOR of that bit and n random bits
 - random sequence known to both sender and receiver
 - called n-bit chipping code
 - 802.11 defines an 11-bit chipping code

```
Data stream: 1010
Random sequence: 0100101101011001
XOR of the two: 1011101110101001
```
MAC for wireless

• Idea to provide similar random access as in Ethernet, but ...
 – in wireless environment not all nodes are always within reach of each other

• Problem 1: hidden nodes
 – Assume node A and C want to transmit to B
 – A and C are unaware of each other
 – transmissions collide at B, but A and C do not know about that

• Problem 2: exposed nodes
 – suppose B is sending to A
 – C hears this
 – however, C can still transmit to D

• Wireless MAC addresses the problems by collision avoidance strategy

MACAW

• MACAW (MACA for Wireless LANs)
 – MACA = Multiple Access with Collision Avoidance
 – idea: nodes ask for permission to send

• MACAW operation:
 – sender transmits RequestToSend (RTS) frame
 – receiver replies with ClearToSend (CTS) frame
 – neighbors...
 • that see CTS: keep quiet (they are too close to sender)
 • that see RTS but not CTS: ok to transmit
 – receiver sends ACK when it has received the frame
 • neighbors silent until see ACK
 – Collisions (= multiple RTS frames sent at the same time)
 • no collision detection
 • known when senders do not receive CTS
 • exponential backoff
Supporting mobility: Access Points (AP)

- Each AP serves hosts within a cell
 - cf. base stations in cellular systems

- APs connected to distribution system
 - 802.11 does not specify what (can be e.g. Ethernet)

- Each mobile node associates with an AP
 - hierarchical network
 - process of making associations called scanning

- Routing
 - within a cell transmissions through AP (1)
 - transmitting to a node in neighboring AP done via distribution network (2)

Associating with an Access Point

- Active scanning
 - node C sends Probe frame
 - all APs within reach reply with ProbeResponse
 - at some point node C selects AP-2 and sends a new AssociationRequest
 - AP-2 replies with AssociationResponse and notifies AP-1 that host C has moved

- Passive scanning
 - APs periodically send Beacon frames
 - host can decide to join at will by replying with AssociationRequest
Supporting mobility: ad hoc networks

- Ad hoc network
 - IEEE 802.11 stations can dynamically form a network without APs
 - each host acts as a “switch” that relays packets based on information about neighboring host location
 - mesh type network topology
 - ad hoc routing a very active research field

- Applications
 - laptop meetings in a conference
 - interconnection of personal devices (e.g. in a house)
 - battlefield

- IETF MANET (Mobile Ad hoc Networks) working group

802.11 frame format

- Control field
 - indicates if frame is a data frame; an RTS or CTS frame; or is used by the scanning algorithm
 - ToDS and FromDS bits (used with 4 address fields)

- 4 address fields
 - if sender and receiver in same cell
 - ToDS = FromDS = 0
 - Addr1 = target, Addr2 = source
 - if sender and receiver in different cells
 - ToDS = FromDS = 1
 - Addr1 = target, Addr4 = source
 - Addr2 = AP that sent frame to target
 - Addr3 = AP that received frame from source