Introduction

General requirements

- So, you want to build a network ...
- First you need to know the requirements the network must satisfy
- The requirements vary depending on who you ask (different views)
- Requirements from different views:
- Application programmer: service specific needs, e.g., packets sent should not get lost and should arrive in the same order
- Network designer: cost effective design, efficient and fair usage of network resources
- Network provider: easy management, reliable, fault isolation
- Users expect services: e-mail, tele- and videoconferencing, e-commerce, video-on-demand, ...

Computer network characteristics

- Typically communications networks optimized for some service
- telephone network
- television/radio broadcast network
- user terminals special purpose devices
- Modern computer networks are more general:
- terminals general purpose PCs/workstations
- networks able to carry essentially any kind of data
- support many different applications
- Topics in this lecture
- How computer networks provide connectivity (Requirement 1)
- How efficient resource sharing is achieved (Requirement 2)
- How applications "talk" to each other (Requirement 3)
- How network perfomance affects the system (Requirement 4)
- Requirements are reflected in network architectures
- Basically, we get a "snap shot" of the issues covered in this course

Outline

- Achieving connectivity
- Methods for resource sharing
- Enabling application level communication
- Performance issues
- Network architecture
- Historical background

Basic building blocks

- A network, in principle, consists of nodes and links connecting the nodes.
- Network nodes: PCs, servers, special purpose hardware
- Internet terminology
- hosts, end-systems: PCs and servers running network applications
- routers (switches): store and forward packets through the network
- Links: optical fiber, coaxial cable, twisted pair copper, radio, etc.
- point-to-point
- hosts directly connected

- multiple access (LANs, etc.)
- hosts share the common transmission medium

Building larger networks

- Large networks can not be built based on point-to-point connectivity \Rightarrow use routers (switches) to interconnect hosts to each other
- Nodes connected together through switches to form connected networks

- Networks connected together through gateway routers to form bigger entities

Network edge vs. core network in the Internet

Internet ${ }^{1}$

${ }^{1}$ Jim Kurose, lecture notes for the course MPSCI 591E Computer Networking, http://www-net.cs.umass.edu/cs591/

- Consists of millions of hosts (end systems) connected by links and routers
- Hosts exchange messages by using protocols offering e.g.
- reliable transfer
- packet sequence integrity
- Routers forward data
- based on best effort service
- no guarantees on loss or timeliness
- "Network of networks"
- loosely hierarchical
- public Internet vs. private Intranets
- Internet access provided by ISPs (Internet Service Providers)

Issues of scale

- Easy to build and manage a network supporting 100 users, but what if the number of users is 100 million ...
- A system allowing unlimited growth in size is said to scale.
- Scalability a very desirable property for networking technologies
- Scalability of networks is often influenced very much by
- the nature of the guarantees regarding service quality
- the amount of information that the network has about the users
- One reason for the success of Internet technology is its scalability
- The networking paradigm is based on best-effort service (no guarantees are made about the service quality) and the network is connectionless
- The nodes of the network do not store any state information of the users/connections
- New nodes and users can be added to the network (almost) without any complexity increases
- Only the routing is affected by the increase in the number of nodes (route computation complexity grows with the number of nodes)

Switching modes

- Circuit switching

- telephone networks
- mobile telephone networks
- ATM technology is also based on circuit switching
- fast packet switching with fixed length packets (cells): ATM
- integration of different traffic types (voice, data, video) \Rightarrow multiservice networks
- Packet switching
- data networks
- two possibilities
- connectionless: e.g. Internet (IP), SS7 (MTP)
- (connection oriented: e.g. X.25, Frame Relay)

Circuit switching

- Connection oriented:
- connections set up end-to-end before information transfer
- resources reserved for the whole duration of connection
- Information transfer as a continuous stream
- Before information transfer
- delay (to set up the connection)
- During information transfer
- no overhead
- no extra delays

11

(Connectionless) packet switching

- Connectionless:
- no connection set-up
- no resource reservation
- Information transfer by using discrete packets
- varying length
- global address (of the destination)
- Before information transfer
- no delays
- During information transfer
- overhead (header bytes)
- packet processing delays
- queuing delays (since packets compete for shared resources)
- routers "store-and-forward"

Addressing and routing

- Hosts need to distinguish each other when wishing to communicate
- Each host is assigned a unique byte-string known as address
- When a sender communicates with some destination B, in a packet switched network
- the address of the destination (B) is attached to each packet, and
- each router determines how to forward the packet based on the destination address
- routing is the systematic process of determining where a packet is sent (which output port) based on the destination address
- Different addressing and routing scenarios
- unicast: between a single sender and destination pair
- broadcast: from a single user to all other users (e.g. network control messages)
- multicast: from a single user to a subset of all users (e.g. distribution of files)

Outline

- Achieving connectivity
- Methods for resource sharing
- Enabling application level communication
- Performance issues
- Network architecture
- Historical background

Multiplexing

- Multiplexing
- mechanism for achieving resource sharing, i.e., sharing of link bandwidth
- Problem:
- How can the link bandwidth be shared among n different senders
- 1st approach: partition the bandwidth strictly for all users
- FDM and TDM

Frequency Division Multiplexing (FDM)

- FDM
- oldest multiplexing technique
- used e.g. in analogue circuit switched systems
- fixed portion (frequency band) of the link bandwidth reserved for each channel
- FDM multiplexer is lossless
- input: n 1-channel physical connections
- output: $1 n$-channel physical connection

Time Division Multiplexing (TDM)

- TDM
- used in digital circuit switched systems and digital transmission systems
- information conveyed on a link transferred in frames of fixed length
- fixed portion (time slot) of each frame reserved for each channel
- TDM multiplexer is lossless
- input: n 1-channel physical connections
- output: $1 n$-channel physical connection

Statistical multiplexing (1)

- FDM and TDM are inefficient
- If a sender has no data to transmit, the bandwidth allocated to the sender can not be used by others \Rightarrow statistical multiplexing
- In statistical multiplexing
- basic transmission unit is called a packet
- physical link is shared over time (cf. TDM) but on-demand (per each packet)
- simultaneous packet arrivals are buffered (contention)
- as a result, packets from multiple senders are interleaved at the output
- buffer space is finite, thus buffer overflow is possible (congestion)

Statistical multiplexing (2)

- Statistical multiplexer is (typically) lossy
- input: n physical connections with link speeds $R_{i}(i=1, \ldots, n)$
- output: 1 physical connection with link speed $C \leq R_{1}+\ldots+R_{n}$
- However, the loss probability can be decreased by enlarging the buffer
- with an "infinite" buffer enough that C exceeds average aggregated input rate
- possible to dimension the size of the buffer such that a given loss probability is achieved (under some assumptions regarding the traffic)
- Statistical multiplexer and QoS (Quality of Service)
- determining which packet to transmit from the buffer is called scheduling
- FIFO: packets are served in the arrival order
- Round robin: each connection (class) has own queue and they are served cyclically according to some weights
- Many more exist...
- by using different scheduling mechanisms, some connections can be given "preferential" treatment (e.g., weighted round-robin) \Rightarrow QoS enabled networks

Outline

- Achieving connectivity
- Methods for resource sharing
- Enabling application level communication
- Performance issues
- Network architecture
- Historical background

Communication needs of applications

- Applications (processes) running on hosts need to communicate
- different applications have different needs
- Typical application considerations
- reliability?
- packet sequence order?
- security?
- Network design challenge
- identify the set of common services that the applications need
- hide the complexity of the network without imposing too many constraints on the applications
- Network provides "logical channels"
- IPC = Inter Process Communication
- fills in the "logical gap"

21

Application requirement classification

1 Client/server applications (request/reply applications)

- client process makes a request and the server process replies
- strict requirements on packet loss (no loss), may have security requirements
- Examples: file transfer (FTP), file systems (NFS), HTML documents on the web, digital libraries
2 Streaming applications
- sender generates a continuous stream of packets
- the stream can correspond to, e.g., digitized audio or video
- applications have relatively tight requirements on the timeliness of packet delivery, but they can tolerate packet loss to some degree
- videoconferencing has tighter demands than video on-demand
- Security? Conferencing may require, e.g., encrypted transmission...
- Question 1: Are only 2 categories enough?
- Question 2: Where is the functionality of each service implemented?

Reliable transfer - what can go wrong?

- Reliable transfer: one of the most important service properties
- "network hides certain failures to make the network seem more reliable"
- Error types
- Bit errors: bit or burst of bits is corrupted
- Error correction detection may be able to fix the problem
- Packet errors: complete packet is lost
- Due to unrecoverable bit errors, congestion (most likely reason), software errors (misplaced packets, relatively rare)
- Problem: Not easy to distinguish between packets that are excessively late (due to e.g. severe overload) and actually lost packets.
- Node/link failures:
- A physical link is damaged/cut, router crashes ..
- Can cause massive service disruptions
- In Internet routing protocols can recover from link failures
- Problem: Not easy to determine if a router is e.g. completely down or just congested.

S-38.188 - Computer Networks - Spring 2003

Outline

- Achieving connectivity
- Methods for resource sharing
- Enabling application level communication
- Performance issues
- Network architecture
- Historical background

Performance measures (1): bandwidth

- Bandwidth = throughput
- nof bits that can be transmitted over the network in a given time
- unit: bits per second (bps), e.g. 10 Mbps (cf. $\mathrm{MB}=$ megabytes $=8 \mathrm{Mb}$)
- Link bandwidth and end-to-end bandwidth
- bandwidth of a physical link has a deterministic value, e.g. 155 Mbps
- link bandwidths are constantly improving: link bandwidths in the backbone
- 1980's: 2 Mbps, 1990's: 155 Mbps, 2000: 1 Gbps
- end-to-end the received bandwidth of an application depends on
- other traffic in the network (congestion)
- application limitations (CPU speed of the computer)
- protocol overhead (each bit sent by the application is "wrapped" in possibly several "envelopes" until the bit is transmitted on a physical link)

Performance measures (2): latency

- Latency = delay
- How long it takes a message to travel from one end of the nw to another
- Measured in units of time, e.g., latency across US continent 24 ms
- RTT (round trip time): time it takes a message to reach its destination and come back to the sender
- Components: propagation delay, transmission delay, queuing delay

$$
\begin{array}{ccc}
\text { Latency } & = & \text { Propagation }+ \text { Transmit + Queue } \\
\text { Propagation } & = & \text { Distance/SpeedOfLight } \\
\text { Transmit } & = & \text { Size/Bandwidth }
\end{array}
$$

- Speed of Light: $2.3 \times 10^{\wedge} 8 \mathrm{~m} / \mathrm{s}$ in cable, $2.0 \times 10^{\wedge} 8 \mathrm{~m} / \mathrm{s}$ in fiber
- Applications can be either bandwidth or latency bound
- Telnet sessions are latency bound but large FTP transfers are bw bound

Delay x bandwidth product

- The product of RTT and bandwidth determines
- the amount of information transmitted by the user before any feed-back from the destination can be received
- In broadband wide-area-networks (WAN) this product can be very large
- the sender can overload the receiver
- if the sender does not "fill in the pipe", the network utilization may be low
- Example:
- Assume that
- distance is 1500 km
- transmission rate $\mathrm{C}=100 \mathrm{Mbps}$
- The two-way propagation delay is
- 2*1500/300,000 s = 0.01 s
- Thus, the product of RTT and C is

27

Delay \mathbf{x} bandwidth product in high speed networks

- Assume RTT = 100 ms , we aim to transmit a file of size 1 MB
- 1 Mbps network: time to transmit $=80 \times$ RTT
- 80 pipes full of data (stream of data to send)
- clearly, the network design problem would be to increase the bandwidth
- 1 Gbps network: time to transmit $=0.08 \times$ RTT
- only 8% of the pipe is filled (the file has become a single "packet")
- now, the latency dominates the network design
- Thus, coping with the delay seems like the main design issue in future high speed networks
- Applications have other performance requirements than delay and bandwidth
- Applications may have an upper bound on required bandwidth
- Real time applications have requirements on delay variation (jitter) caused by queuing in the network routers

Performance of a statistical multiplexer (1)

- Internet is based on the use of statistical multiplexing
- the output port of a router operates as a statistical multiplexer
- A statistical multiplexer can be modeled as a waiting system (= queue)
- Traffic consists of packets
- each packet is transmitted with the full link speed C
- packets arrive at a rate λ and let L denote the average packet length
- packet service rate μ will be $\mu=C / L$
- let $\rho=\lambda / \mu$, stability requirement: packet arrival rate $\lambda<\mu \Rightarrow \rho<1$

Performance of a statistical multiplexer (2)

- Assume Poisson packet arrivals with exponentially distributed sizes
- M/M/1 queuing system
- Load vs. mean queue length
- mean queue length (and delay) rises sharply as load approaches 1
- Reasonable to design the network s.t. load < 0.9
- link utilization always < 100\%
- congestion control needed

- The results are qualitatively the same regardless of the assumptions of the traffic

Outline

- Achieving connectivity
- Methods for resource sharing
- Enabling application level communication
- Performance issues
- Network architecture
- Historical background

Layered architectures

- A computer network must provide for a large number of hosts
- cost effective, fair, robust and high performance connectivity, and
- it must be easily able to accommodate new network technologies
- Network architecture
- to guide the design and implementation of networks
- abstractions used to hide complexities
- In networks, abstractions lead to layered designs
- services offered at higher layers are implemented in terms of services provided by lower layers
- often multiple abstractions (services) are provided to serve the varying requirements of above layers (multiplexing of upper layer protocols)
- Benefits of layering
- decomposes the implementation problem into manageable components

Protocols

- Each layer implemented by a protocol
- protocols offer communication services to higher level objects
- A protocol offers two interfaces:
- Service interface: offered to higher level objects on the same host
- Peer interface: offered to peer protocol objects existing on other hosts

Encapsulation

- At the sender side, each lower layer protocol adds a header (L3H, L2H) thus encapsulating the upper layer packet
- simple transformations (compression, encryption) of the packet possible
- At the receiver side, each layer removes the corresponding header and forwards the packet to the higher layer protocol entity

OSI (Open Systems Interconnect) architecture

- The "classic" 7-layer reference model (late 70's)
- protocols following the model defined in conjunction with ISO and ITU-T

S-38.188 - Computer Networks - Spring 2003

Internet architecture

- Internet architecture has only 4 layers
- L4: range of application protocols (FTP, ...)
- L3: TCP (reliable byte transfer) and UDP (unreliable datagram delivery) provide logical channels to applications
- L2: IP protocol interconnects multiple networks into a single logical network
- L1: wide variety of network protocols
- "hour glass" shape

Outline

- Achieving connectivity
- Methods for resource sharing
- Enabling application level communication
- Performance issues
- Network architecture
- Historical background

Brief Internet history (1)

${ }^{1}$ Jim Kurose, lecture notes for the course MPSCI 591E Computer Networking, http://www-net.cs.umass.edu/cs591/

1961-1972: Early packet-switching principles

- 1961: Kleinrock - queuing theory shows effectiveness of packetswitching
- 1964: Baran - packet-switching in military nets
- 1967: ARPAnet conceived by Advanced Research Projects Agency
- 1969: first ARPAnet node operational
- 1972:
- ARPAnet demonstrated publicly
- NCP (Network Control Protocol) first host-host protocol
- first e-mail program
- ARPAnet has 15 nodes

Brief Internet history (2)

1972-1980: Internetworking, new and proprietary nets

- 1970: ALOHAnet satellite network in Hawaii
- 1973: Metcalfe's Ph.D. thesis proposes Ethernet
- 1974: Cerf and Kahn - architecture for interconnecting networks
- still determine largely the development of today's Internet
- late70's: proprietary architectures: DECnet, SNA, XNA
- late 70's: switching fixed length packets (ATM precursor)
- 1979: ARPAnet has 200 nodes

Brief Internet history (3)

1980-1990: new protocols, a proliferation of networks

- 1983: deployment of TCP/IP
- 1982: smtp e-mail protocol defined
- 1983: DNS defined for name-to-IPaddress translation
- 1985: ftp protocol defined
- 1988: TCP congestion control
- new national networks: Csnet, BITnet, NSFnet, Minitel
- 100,000 hosts connected to confederation of networks

Brief Internet history (4)

1990's: commercialization, the WWW

- Early 1990's: ARPAnet decommissioned
- 1991: NSF lifts restrictions on commercial use of NSFnet (decommissioned, 1995)
- early 1990s: WWW
- hypertext [Bush 1945, Nelson 1960's]
- HTML, http: Berners-Lee
- 1994: Mosaic, later Netscape
- late 1990's: commercialization of the WWW

Late 1990's:

- estimated 50 million computers on Internet
- estimated 100 million+ users
- backbone links running at 1 Gbps

