HELENKI UNIVERSITY OF TECHNOLOGY		
	Introduction	
1001		

188lecture1.ppt

© Pasi Lassila

1

S-38.188 - Computer Networks - Spring 2003

General requirements

- So, you want to build a network ...
 - First you need to know the requirements the network must satisfy
 - The requirements vary depending on who you ask (different views)
- Requirements from different views:
 - Application programmer: service specific needs, e.g., packets sent should not get lost and should arrive in the same order
 - Network designer: cost effective design, efficient and fair usage of network resources
 - Network provider: easy management, reliable, fault isolation
 - Users expect services: e-mail, tele- and videoconferencing, e-commerce, video-on-demand, ...

Computer network characteristics

- Typically communications networks optimized for some service
 - telephone network
 - television/radio broadcast network
 - user terminals special purpose devices
- Modern computer networks are more general:
 - terminals general purpose PCs/workstations
 - networks able to carry essentially any kind of data
 - support many different applications
- Topics in this lecture
 - How computer networks provide connectivity (Requirement 1)
 - How efficient resource sharing is achieved (Requirement 2)
 - How applications "talk" to each other (Requirement 3)
 - How network perfomance affects the system (Requirement 4)
 - Requirements are reflected in network architectures
 - Basically, we get a "snap shot" of the issues covered in this course

3

S-38.188 - Computer Networks - Spring 2003

Outline

- Achieving connectivity
- Methods for resource sharing
- Enabling application level communication
- Performance issues
- Network architecture
- Historical background

Basic building blocks

- A network, in principle, consists of **nodes** and **links** connecting the nodes.
- Network nodes: PCs, servers, special purpose hardware
 - Internet terminology
 - hosts, end-systems: PCs and servers running network applications
 - routers (switches): store and forward packets through the network
- Links: optical fiber, coaxial cable, twisted pair copper, radio, etc.
 - point-to-point
 - hosts directly connected
 - multiple access (LANs, etc.)
 - hosts share the common transmission medium

S-38.188 - Computer Networks - Spring 2003

H H H H

н

Н

н

Issues of scale

- Easy to build and manage a network supporting 100 users, but what if the number of users is 100 million ...
- A system allowing unlimited growth in size is said to scale.
 - Scalability a very desirable property for networking technologies
- Scalability of networks is often influenced very much by
 - the nature of the guarantees regarding service quality
 - the amount of information that the network has about the users
- · One reason for the success of Internet technology is its scalability
 - The networking paradigm is based on best-effort service (no guarantees are made about the service quality) and the network is connectionless
 - The nodes of the network do not store any state information of the users/connections
 - New nodes and users can be added to the network (almost) without any complexity increases
 - Only the routing is affected by the increase in the number of nodes (route computation complexity grows with the number of nodes)

9

S-38.188 - Computer Networks - Spring 2003

Switching modes

• Circuit switching

- telephone networks
- mobile telephone networks
- ATM technology is also based on circuit switching
 - fast packet switching with fixed length packets (cells): ATM
 - integration of different traffic types (voice, data, video)
 ⇒ multiservice networks

Packet switching

- data networks
- two possibilities
 - connectionless: e.g. Internet (IP), SS7 (MTP)
 - (connection oriented: e.g. X.25, Frame Relay)

Circuit switching

• Connection oriented:

- connections set up end-to-end before information transfer
- resources reserved for the whole duration of connection
- Information transfer as a continuous stream
- Before information transfer
 - delay (to set up the connection)
- During information transfer
 - no overhead
 - no extra delays

Addressing and routing

- Hosts need to distinguish each other when wishing to communicate
- Each host is assigned a unique byte-string known as address
- When a sender communicates with some destination B, in a packet switched network
 - the address of the destination (B) is attached to each packet, and
 - each router determines how to forward the packet based on the destination address
 - routing is the systematic process of determining where a packet is sent (which output port) based on the destination address
- Different addressing and routing scenarios
 - unicast: between a single sender and destination pair
 - broadcast: from a single user to all other users (e.g. network control messages)
 - multicast: from a single user to a subset of all users (e.g. distribution of files)

S-38.188 - Computer Networks - Spring 2003

Outline

- Achieving connectivity
- Methods for resource sharing
- Enabling application level communication
- Performance issues
- Network architecture
- Historical background

Multiplexing

- Multiplexing
 - mechanism for achieving resource sharing, i.e., sharing of link bandwidth
- Problem:
 - How can the link bandwidth be shared among *n* different senders
 - 1st approach: partition the bandwidth strictly for all users
 - FDM and TDM

S-38.188 - Computer Networks - Spring 2003

Frequency Division Multiplexing (FDM)

- FDM
 - oldest multiplexing technique
 - used e.g. in analogue circuit switched systems
 - fixed portion (frequency band) of the link bandwidth reserved for each channel
- FDM multiplexer is lossless
 - input: *n* 1-channel physical connections
 - output: 1 *n*-channel physical connection

Time Division Multiplexing (TDM)

- TDM
 - used in digital circuit switched systems and digital transmission systems
 - information conveyed on a link transferred in **frames** of fixed length
 - fixed portion (time slot) of each frame reserved for each channel
- TDM multiplexer is lossless
 - input: n 1-channel physical connections
 - output: 1 n-channel physical connection

S-38.188 - Computer Networks - Spring 2003

Statistical multiplexing (1)

- FDM and TDM are inefficient
 - If a sender has no data to transmit, the bandwidth allocated to the sender can not be used by others ⇒ statistical multiplexing
- In statistical multiplexing
 - basic transmission unit is called a packet
 - physical link is shared over time (cf. TDM) but **on-demand** (per each packet)
 - simultaneous packet arrivals are buffered (contention)
 - as a result, packets from multiple senders are *interleaved* at the output
 - buffer space is finite, thus buffer overflow is possible (congestion)

17

Statistical multiplexing (2)

- Statistical multiplexer is (typically) lossy
 - input: *n* physical connections with link speeds R_i (*i* = 1,...,*n*)
 - output: 1 physical connection with link speed $C \le R_1 + ... + R_n$
- However, the loss probability can be decreased by enlarging the buffer
 - with an "infinite" buffer enough that C exceeds average aggregated input rate
 - possible to dimension the size of the buffer such that a given loss probability is achieved (under some assumptions regarding the traffic)
- Statistical multiplexer and QoS (Quality of Service)
 - determining which packet to transmit from the buffer is called scheduling
 - FIFO: packets are served in the arrival order
 - Round robin: each connection (class) has own queue and they are served cyclically according to some weights
 - Many more exist...
 - by using different scheduling mechanisms, some connections can be given "preferential" treatment (e.g., weighted round-robin) ⇒ QoS enabled networks
 19

S-38.188 - Computer Networks - Spring 2003

Outline

- Achieving connectivity
- Methods for resource sharing
- Enabling application level communication
- Performance issues
- Network architecture
- Historical background

Communication needs of applications

- Applications (processes) running on hosts need to communicate
 - different applications have different needs
 - Typical application considerations
 - reliability?
 - packet sequence order?
 - security?
- Network design challenge
 - identify the set of common services that the applications need
 - hide the complexity of the network without imposing too many constraints on the applications
- Network provides "logical channels"
 - IPC = Inter Process Communication
 - fills in the "logical gap"

- Question 1: Are only 2 categories enough?
- Question 2: Where is the functionality of each service implemented?

Reliable transfer - what can go wrong?

- Reliable transfer: one of the most important service properties
 - "network hides certain failures to make the network seem more reliable"
- Error types
 - **Bit errors**: bit or burst of bits is corrupted
 - Error correction detection may be able to fix the problem
 - Packet errors: complete packet is lost
 - Due to unrecoverable bit errors, congestion (most likely reason), software errors (misplaced packets, relatively rare)
 - Problem: Not easy to distinguish between packets that are excessively late (due to e.g. severe overload) and actually lost packets.
 - Node/link failures:
 - A physical link is damaged/cut, router crashes ...
 - Can cause massive service disruptions
 - In Internet routing protocols can recover from link failures
 - Problem: Not easy to determine if a router is e.g. completely down or just congested.

23

S-38.188 - Computer Networks - Spring 2003

Outline

- Achieving connectivity
- Methods for resource sharing
- Enabling application level communication
- Performance issues
- Network architecture
- Historical background

Performance measures (1): bandwidth

- Bandwidth = throughput
 - nof bits that can be transmitted over the network in a given time
 - unit: bits per second (bps), e.g. 10 Mbps (cf. MB = megabytes = 8 Mb)
- Link bandwidth and end-to-end bandwidth
 - bandwidth of a physical link has a deterministic value, e.g. 155 Mbps
 - link bandwidths are constantly improving: link bandwidths in the backbone
 - 1980's: 2 Mbps, 1990's: 155 Mbps, 2000: 1 Gbps
 - end-to-end the received bandwidth of an application depends on
 - other traffic in the network (congestion)
 - application limitations (CPU speed of the computer)
 - protocol overhead (each bit sent by the application is "wrapped" in possibly several "envelopes" until the bit is transmitted on a physical link)

S-38.188 - Computer Networks - Spring 2003

Performance measures (2): latency

- Latency = delay
 - How long it takes a message to travel from one end of the nw to another
 - Measured in units of time, e.g., latency across US continent 24 ms
 - RTT (round trip time): time it takes a message to reach its destination and come back to the sender
- Components: propagation delay, transmission delay, queuing delay

Latency	=	Propagation + Transmit + Queue
Propagation	=	Distance/SpeedOfLight
Transmit	=	Size/Bandwidth

- Speed of Light: 2.3 x 10^8 m/s in cable, 2.0 x 10^8 m/s in fiber
- Applications can be either bandwidth or latency bound
 - Telnet sessions are latency bound but large FTP transfers are bw bound

Delay x bandwidth product

- The product of RTT and bandwidth determines
 - the amount of information transmitted by the user before any feed-back from the destination can be received
- In broadband wide-area-networks (WAN) this product can be very large
 - the sender can overload the receiver
 - if the sender does not "fill in the pipe", the network utilization may be low
- Example:
 - Assume that
 - distance is 1500 km
 - transmission rate C = 100 Mbps
 - The two-way propagation delay is
 - 2*1500/300,000 s = 0.01 s
 - Thus, the product of RTT and C is
 - 0.01*100,000,000 bits
 - = 1,000,000 bits = 1 Mbit

- Assume RTT = 100 ms, we aim to transmit a file of size 1 MB
 - 1 Mbps network: time to transmit = 80 x RTT
 - 80 pipes full of data (stream of data to send)
 - clearly, the network design problem would be to increase the bandwidth
 - 1 Gbps network: time to transmit = 0.08 x RTT
 - only 8 % of the pipe is filled (the file has become a single "packet")
 - now, the latency dominates the network design
- Thus, coping with the delay seems like the main design issue in future high speed networks
- Applications have other performance requirements than delay and bandwidth
 - Applications may have an upper bound on required bandwidth
 - Real time applications have requirements on delay variation (jitter) caused by queuing in the network routers

Performance of a statistical multiplexer (1)

- Internet is based on the use of statistical multiplexing
 - the output port of a router operates as a statistical multiplexer
- A statistical multiplexer can be modeled as a waiting system (= queue)
- Traffic consists of packets
 - each packet is transmitted with the full link speed C
 - packets arrive at a rate λ and let L denote the average packet length
 - packet service rate μ will be $\mu = C/L$
 - let $\rho = \lambda / \mu$, stability requirement: packet arrival rate $\lambda < \mu \Longrightarrow \rho < 1$

S-38.188 - Computer Networks - Spring 2003

- Assume Poisson packet arrivals with exponentially distributed sizes
 - M/M/1 queuing system
- Load vs. mean queue length
 - mean queue length (and delay) rises sharply as load approaches 1
- Reasonable to design the network s.t. load < 0.9
 - link utilization always < 100%
 - congestion control needed

 The results are qualitatively the same regardless of the assumptions of the traffic

Outline

- Achieving connectivity
- Methods for resource sharing
- Enabling application level communication
- Performance issues
- Network architecture
- Historical background

S-38.188 - Computer Networks - Spring 2003

Layered architectures

- A computer network must provide for a large number of hosts
 - cost effective, fair, robust and high performance connectivity, and
 - it must be easily able to accommodate new network technologies
- Network architecture
 - to guide the design and implementation of networks
 - abstractions used to hide complexities
- In networks, abstractions lead to layered designs
 - services offered at higher layers are implemented in terms of services provided by lower layers
 - often multiple abstractions (services) are provided to serve the varying requirements of above layers (multiplexing of upper layer protocols)
- Benefits of layering
 - decomposes the implementation problem into manageable components
 - modular design (adding new functionality may only affect one layer)

Protocols

- Each layer implemented by a protocol
 - protocols offer communication services to higher level objects
- A protocol offers two interfaces:
 - Service interface: offered to higher level objects on the same host
 - Peer interface: offered to peer protocol objects existing on other hosts

- simple transformations (compression, encryption) of the packet possible
- At the receiver side, each layer removes the corresponding header and forwards the packet to the higher layer protocol entity

- L4: range of application protocols (FTP, ...)
- L3: TCP (reliable byte transfer) and UDP (unreliable datagram delivery) provide logical channels to applications
- L2: IP protocol interconnects multiple networks into a single logical network
- L1: wide variety of network protocols
- "hour glass" shape

Outline

- Achieving connectivity
- Methods for resource sharing
- Enabling application level communication
- Performance issues
- Network architecture
- Historical background

S-38.188 - Computer Networks - Spring 2003

Brief Internet history (1)

¹Jim Kurose, lecture notes for the course MPSCI 591E Computer Networking, http://www-net.cs.umass.edu/cs591/

1961-1972: Early packet-switching principles

- 1961: Kleinrock queuing theory shows effectiveness of packetswitching
- 1964: Baran packet-switching in military nets
- 1967: ARPAnet conceived by Advanced Research Projects Agency
- 1969: first ARPAnet node
 operational

- 1972:
 - ARPAnet demonstrated publicly
 - NCP (Network Control Protocol) first host-host protocol
 - first e-mail program
 - ARPAnet has 15 nodes

Brief Internet history (2)

¹Jim Kurose, lecture notes for the course MPSCI 591E Computer Networking, http://www-net.cs.umass.edu/cs591/

1972-1980: Internetworking, new and proprietary nets

- 1970: ALOHAnet satellite network in Hawaii
- 1973: Metcalfe's Ph.D. thesis proposes Ethernet
- 1974: Cerf and Kahn architecture for interconnecting networks
 - still determine largely the development of today's Internet

- late70's: proprietary architectures: DECnet, SNA, XNA
- late 70's: switching fixed length packets (ATM precursor)
- 1979: ARPAnet has 200 nodes

39

S-38.188 - Computer Networks - Spring 2003

Brief Internet history (3)

¹Jim Kurose, lecture notes for the course MPSCI 591E Computer Networking, http://www-net.cs.umass.edu/cs591/

1980-1990: new protocols, a proliferation of networks

- 1983: deployment of TCP/IP
- 1982: smtp e-mail protocol defined
- 1983: DNS defined for name-to-IPaddress translation
- 1985: ftp protocol defined
- 1988: TCP congestion control
- new national networks: Csnet, BITnet, NSFnet, Minitel
- 100,000 hosts connected to confederation of networks

Brief Internet history (4)

¹Jim Kurose, lecture notes for the course MPSCI 591E Computer Networking, http://www-net.cs.umass.edu/cs591/

1990's: commercialization, the WWW

- Early 1990's: ARPAnet decommissioned
- 1991: NSF lifts restrictions on commercial use of NSFnet (decommissioned, 1995)
- early 1990s: WWW
 - hypertext [Bush 1945, Nelson 1960's]
 - HTML, http: Berners-Lee
 - 1994: Mosaic, later Netscape
 - late 1990's: commercialization of the WWW

Late 1990's:

- estimated 50 million computers on Internet
- estimated 100 million+ users
- backbone links running at 1 Gbps