Applications and Network Management

Outline

- Name service (DNS)
- Electronic mail (SMTP, MIME)
- World wide web (HTTP)
- Network management (SNMP)
- Network services
Name service (DNS)

- Maps user-friendly names into router-friendly addresses
 - middleware: fills the gap between applications and the underlying network
 - transported using UDP, port number 53
- Host names
 - variable length and mnemonic
 - typically contain no information that helps network to locate the host
- IP addresses
 - fixed-length numeric address
 - may have routing information embedded in them
- Terms:
 - namespace = set of possible names, flat or hierarchical
 - naming system maintains a collection of bindings of names to values
 - given a name, a resolution mechanism returns the corresponding value
 - a name server is an implementation of the resolution mechanism
 - DNS (Domain Name System) = name service in Internet

DNS domain hierarchy

- First level hierarchy
 - domains for each country + edu, com, gov, mil, org, net
 - DNS first level managed by Internet Corporation for Assigned Names and Numbers (ICANN), also manages address allocations
- Hierarchy is partitioned into subtrees, zones
 - zone corresponds to fundamental implementation unit in DNS (i.e., a name server)
DNS domain hierarchy (cont)

- Zones implemented in two or more name servers (redundancy)
 - clients send queries to name servers
 - servers response with final answer or pointer to another server
- Name binding database consists of resource records
 - format: `<Name, Value, Type, Class, TTL>`
 - Type: how Value is interpreted,
 - A: means that Value is an IP address, name-address mapping
 - NS: Value contains name for host that knows how to resolve the name
 - CNAME: Value is a canonical name for host, used to define aliases
 - MX: Value gives the domain name for a host running a mail server
 - Class: only widely used class IN (Internet)
 - TTL: how long resource record is valid (used by servers that cache resource records from other servers)
 - can use alias for company web server ⇒ web server to be changed without remote users being affected
 - MX allows administrators to change the mail host without changing user email addresses

Root name server: NS record for each 2nd level server + A record that translates name into IP address

- Princeton name server
 - `<princeton.edu, cit.princeton.edu, NS, IN>`
 - `<cit.princeton.edu, 128.196.128.233, A, IN>`

- At 2nd level, records contain either final answers or pointer to 3rd level name servers

- CS name server
 - `<cs.princeton.edu, gnat.cs.princeton.edu, NS, IN>`
 - `<gnat.cs.princeton.edu, 192.12.69.5, A, IN>` (pair like above)

- EE name server
 - `<jupiter.physics.princeton.edu, 128.196.4.1, A, IN>` (final record)

- Lowest level contains final records, aliases for hosts (CNAME) and MX records
Name resolution

- How did the client locate the root server in the first place?
 - name-to-address mapping for one or more name servers is well known (published outside the naming system itself)
 - in practice, client program initialized with the address of a local name server
 - client makes a query to local server ⇒ local server makes queries further
 - advantages
 - only the servers need to know about root name servers
 - local server gets to see the responses (can cache these)
 - on a host running DNS (in Unix), try “nslookup” or “host <hostname>”

- Note: Internet has identifiers at 3 levels - domain names, IP addresses, and physical network addresses
 - users give domain names in applications ⇒ applications use DNS to translate these into IP addresses ⇒ IP does forwarding at each router, so it maps IP addresses into another (next hop router) ⇒ IP engages ARP to translate the next hop IP address into a physical address

Name resolution (cont)

Numbers (1-8) show the sequence of steps in the process
Outline

- Name service (DNS)
- Electronic mail (SMTP, MIME)
- World wide web (HTTP)
- Network management (SNMP)
- Network services

Traditional Applications and Protocols

- Traditional = elastic data traffic, without timeliness requirements
 - real time traffic treated later...

- SMTP: Simple Mail Transfer Protocol
 - exchange of electronic mail
 - RFC 822 and MIME define the format of email messages

- HTTP: HyperText Transport Protocol
 - communication between Web browsers and Web servers
 - HTML specifies the form or the Web pages

- SNMP: Simple Network Management Protocol
 - querying (and modifying) the state of remote network nodes
 - MIB (management information base) defines the variables that can be queried
Electronic mail (SMTP, MIME)

- Mail service consists of
 - a mail reader,
 - a message transfer protocol (SMTP) and
 - SMTP = Simple Message Transfer Protocol
 - companion protocols RFC 822 & MIME

- Mail access protocol: retrieval from server
 - reader programs: Netscape Messenger, Outlook, Eudora, Mozilla
 - POP3: Post Office Protocol (RFC 1939)
 - authorization (agent ↔ server) and download
 - downloads mails to your own local host
 - IMAP: Internet Mail Access Protocol (RFC 1730)
 - more features (more complex)
 - manipulation of inbox and stored messages on server
 - HTTP: Hotmail, Yahoo! Mail, etc.

Electronic mail (cont)

- Message format:
 - RFC 822: message has two parts - a header and a body
 - both in ASCII text
 - MIME: extends RFC 822 so that message can contain all sorts of data
 - data still presented as ASCII text
 - ASCII format ⇒ human can pretend to be an smtp client

- Message header:
 - series of <CRLF>-terminated lines (carriage-return + line-feed)
 - separated from message body by blank line
 - each header line contains a Type and a Value separated by a colon
 - To: student@hut.fi
 - Subject: lecture notes
MIME

- Extends RFC 822 to allow email messages to carry audio, video, images, Word documents etc.

- Consists of 3 basic pieces
 - collection of header lines
 - extend the original set defined in RFC 822
 - ex. MIME-version, Content-Description, Content-Type, Content-Transfer-Encoding..
 - definitions for a set of content types
 - ex. image/gif, image/jpeg, text/plain, text/richtext, application/postscript, application/msword
 - a way to encode various data types so that they can be shipped in an ASCII mail message
 - base64 coding of binary data into ASCII: map every 3 bytes of the original binary data into 4 ASCII characters

MIME Example (text + attached file)

MIME-Version: 1.0
Content-Type: multipart/mixed; boundary="XXXXboundary text"
From: John Doe <jdoe@microsoft.com>
To: Jane Doe <janedoe@nowhere.edu>
Subject: ...
Date: Tue, 04 Feb 2003 20:15:00 -0200

This is a multipart message in MIME format.

--XXXXboundary text
Content-Type: text/plain
this is the body text

--XXXXboundary text
Content-Type: text/plain; filename="test.txt"
Content-Disposition: attachment;
this is the attachment text

--XXXXboundary text--
Message transfer (SMTP)

- E-mail delivery
 - mail reader \Rightarrow message to mail daemon \Rightarrow daemon uses SMTP running over TCP to get message to a daemon in another machine \Rightarrow this daemon puts the message into user’s mailbox
 - SMTP uses TCP on port 25
- Mail traverses many mail gateways that store and forward email msgs
 - mail gateway vs. IP router? IP router stores datagrams in memory and tries to retransmit them for a short period of time (fraction of seconds), mail gateway buffer messages on disk and try resending for days or so

SMTP Example

- Exchange between sending host cs.princeton.edu and receiving host cisco.com (responses in italics)
 - you can be an SMTP client by first starting a TCP connection at a mail server in port 25, “telnet <servername> 25”, then use the commands below

 $$\text{HELO} \ \text{cs.princeton.edu}$$
 $$250 \text{ Hello daemon@mail.cs.princeton.edu [128.12.169.24]}$$

 $$\text{MAIL FROM}: \langle \text{Bob@cs.princeton.edu}\rangle$$
 $$250 \text{ OK}$$

 $$\text{RCT TO}: \langle \text{Alice@cisco.com}\rangle$$
 $$250 \text{ OK}$$

 $$\text{RCT TO}: \langle \text{Tom@cisco.com}\rangle$$
 $$550 \text{ No such user here}$$

 $$\text{DATA}$$
 $$354 \text{ Start mail input; end with <CTRL><CTRL>}$$
 $$\text{Blah blah blah}$$
 $$\langle \text{CTRL}\rangle \langle \text{CTRL}\rangle$$
 $$250 \text{ OK}$$

 $$\text{QUIT}$$
 $$221 \text{ Closing connection}$$
Outline

- Name service (DNS)
- Electronic mail (SMTP, MIME)
- World wide web (HTTP)
- Network management (SNMP)
- Network services

World Wide Web (HTTP)

- Web is a collection of cooperating clients and servers
 - everyone uses same protocol, HTTP
 - web browser used to open web pages
 - URL (Uniform Resource Locator) specifies location of object on the web (e.g., http://www.hut.fi/index.html)
 - opening a URL makes the browser open a TCP connection to port 80 to the given location, e.g., www.hut.fi, and the file index.html would be downloaded to your machine using HTTP over TCP
 - like SMTP, HTTP is a text oriented protocol

- Each HTTP message has the general form

 START_LINE <CRLF>
 MESSAGE_HEADER <CRLF>
 <CRLF>
 MESSAGE_BODY<CRLF>
HTTP, request message

- First line of HTTP message:
 - operation, Web page operation should be performed on, version of HTTP
 - for example, getting our laboratory’s homepage manually

> telnet www.netlab.hut.fi 80

GET /index.html HTTP/1.1
Host: www.netlab.hut.fi

- Operations
 - OPTIONS request information about available options
 - GET retrieve document identified in URL
 - HEAD retrieve metainformation about document in URL
 - POST give information to server
 - PUT store document under specified URL
 - DELETE delete specified URL
 - TRACE loopback request message
 - CONNECT for use by proxies

HTTP, response message

- START_LINE: version of HTTP, 3-digit response code, text string giving reason for response
 - HTTP/1.1 202 Accepted
 - HTTP/1.1 404 Not Found

- Response message contains one or more MESSAGE_HEADER lines (additional information) and the requested page (HTML document, nontextual data encoded using MIME)

<table>
<thead>
<tr>
<th>Code</th>
<th>Type</th>
<th>Example Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1xx</td>
<td>Info</td>
<td>request received, continuing process</td>
</tr>
<tr>
<td>2xx</td>
<td>Success</td>
<td>action successfully received, understood and accepted</td>
</tr>
<tr>
<td>3xx</td>
<td>Redirection</td>
<td>further action must be taken to complete the request</td>
</tr>
<tr>
<td>4xx</td>
<td>Client Error</td>
<td>request contains bad syntax or cannot be fulfilled</td>
</tr>
<tr>
<td>5xx</td>
<td>Server Error</td>
<td>server failed to fulfill an apparently valid request</td>
</tr>
</tbody>
</table>
HTTP and TCP connections

- HTTP version 1.0 made a separate TCP connection for each data item
 - waste of resources, especially when most items are small sized

- HTTP version 1.1 allows persistent connections: client and server can exchange multiple request/response messages over the same TCP connection
 - good:
 - eliminates the connection setup overhead
 - client can send multiple request messages -> TCP’s congestion window mechanism operates more efficiently (not necessary to do slow start for each request)
 - bad:
 - neither the client nor server knows how long to keep a particular TCP connection open (problem for servers with thousands of connections)
 - client and server must watch if the other side has elected to close the connection (recall, both sides need to close the TCP connection)

Caching

- WWW cache = web proxy
- Benefits:
 - pages from nearby cache can be displayed quickly
 - can reduce servers’ load
- Implementation at several (hierarchical) layers:
 - in user’s browser
 - user’s site can support a single sitewide cache (takes advantage of pages previously downloaded by other users)
 - ISPs may have their own caches
- Cache needs to make sure it is not responding with an out-of-date version of the page
 - server may assign an expiration date (Expires header field) to each page
 - HTTP conditional requests by using, i.e., If-Modified-Since message header
Outline

- Name service (DNS)
- Electronic mail (SMTP, MIME)
- World wide web (HTTP)
- Network management (SNMP)
- Network services

Network Management (SNMP)

- Possible tasks:
 - monitor faulty equipment in the network
 - keep track of the load on various nodes (need for new routers or links?)
 - etc., etc.
- Nodes in the network are distributed ⇒ use the network to manage the network
 - need a protocol for reading (and writing) state information on different network nodes
- Simple Network Management Protocol (SNMP)
 - request/reply protocol that supports GET and SET messages
 - runs on top of UDP
 - client program uses SNMP to request information, SNMP server running on a node replies
 - depends on companion specification Management Information Base (MIB) that describes object structure of network elements
Management Information Base (MIB-II)

- Defines MIB variables, the information that can be retrieved from a network node (object oriented model)
- Variables organized into 10 groups, for example:
 - System: general parameters; where node is located, how long it has been up, system's name...
 - Interfaces: info about all network interfaces attached to this node; physical address of each interface, how many packets have been sent/received on each interface
 - Address translation: info about Address Resolution Protocol (ARP)
 - IP: IP variables such as routing table, number of successfully forwarded datagrams, statistics about datagram reassembly...
 - TCP: info on TCP traffic; number of passive/active opens, number of timeouts, default timeout...
 - UDP: info on UDP traffic; number of UDP datagrams...
 - OTHER GROUPS: ICMP, EGP, SNMP
 - Example: 1.3.6.1.2.1.4.3 = IpInReceives (nof IP packets)
 • 1.3.6.1.2.1 MIB db identifier, 4.3 = IP group, 3rd variable

Abstract Syntax Notation One (ASN.1)

- MIB related needs:
 - client uses precise syntax to indicate which MIB variable is needed
 • ASN.1 defines an object identification scheme
 • MIB uses this to get a globally unique identifier to each MIB variable
 - server uses precise representation for values it returns
 • ASN.1/BER (Basic Encoding Rules) defines a representation for different data types
 • MIB defines the type of variable, and then value is encoded according to ASN.1/BER
 - SNMP client puts the ASN.1 identifier for the MIB variable it wants in the request message ⇒ server maps identifier into a local variable ⇒ retrievers the value ⇒ uses ASN.1/BER to encode the value before sending it back to the client
 - Lists and tables (and other compound types) retrieved using SNMP GET-NEXT operation (returns value & ID for next variable)
 • Bulk operation exists, as well (GET-BULK)
ASN.1 / BER

- Each data item is presented by a triple
 - `<type, length, value>`, TLV-coding
 - type: typically an 8-bit field
 - length: specify how many bytes make up the value

```
<table>
<thead>
<tr>
<th>type</th>
<th>length</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>INT</td>
<td>4</td>
<td>4-byte integer</td>
</tr>
</tbody>
</table>
```

Representation for length:
- a) 1-byte,
- b) multibyte (if length > 127 bytes)

Outline

- Name service (DNS)
- Electronic mail (SMTP, MIME)
- World wide web (HTTP)
- Network management (SNMP)
- Network management and operation
Components of network management

- SNMP is a protocol for managing and monitoring network elements
 - just a partial solution to the “whole problem”
- Network management comprises much more...

<table>
<thead>
<tr>
<th>Trad. network management functions</th>
<th>Other aspects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fault management</td>
<td>Chargeback</td>
</tr>
<tr>
<td>identification, isolation, fixing</td>
<td>charge only for used resources</td>
</tr>
<tr>
<td>done by requesting, testing and analyzing reports</td>
<td></td>
</tr>
<tr>
<td>Configuration management</td>
<td>Systems management</td>
</tr>
<tr>
<td>naming of components, properties of components, states of components</td>
<td>system is more than just the network elements</td>
</tr>
<tr>
<td>Accounting</td>
<td>Cost management</td>
</tr>
<tr>
<td>important for operators</td>
<td>costs consist of maintenance, Mean Time Between Failures, Mean Time To Repair</td>
</tr>
<tr>
<td>Performance management</td>
<td>focus on reliability, functionality, manageability</td>
</tr>
<tr>
<td>knowledge on what part of network needs to be improved</td>
<td></td>
</tr>
<tr>
<td>Security management</td>
<td></td>
</tr>
</tbody>
</table>

- TMN = comprehensive framework for network management
 - set of standards developed by ITU (M.3xxx series), based on OSI management (CMIP)
 - SNMP can be used to address some of the issues within TMN (not all)

Network operation

- Focus on reliability and availability
 - reliable components, backups
 - extra components to give fault tolerance, reliable power supply

- Costs
 - equipment (20%), technical support (20%), maintenance (15%), help desk for users (45%)

- Services offered by the network system
 - data storage
 - basic service, possibly also authorization
 - databases
 - searches, different data types, data with management
 - printers
 - data delivery (network)
 - supports contacts and co-operation
 - applications
Network operation (cont)

- Storing the data
 - online: available immediately (< 1 s), on disk
 - nearline: automatically available (< 1 min), on tape or cd-rom
 - offline: available manually, on tape
 - hierarchy in storing: online ⇒ nearline ⇒ offline

- Backups protect from
 - failure in storage media, program errors / viruses, human errors, physical threats (fire, water...) IF AND ONLY IF making backups is systematic and backups are physically safe