Today’s Topic

- This part of the lecture is about Differentiated Services architecture.

Internet today

- Current Internet:
 - ‘Best Effort’-service
 - Equal opportunities (competitive resource sharing)
 - Equal missouries (uncontrolled delays and packet losses)
 - Trend:
 - Internet is becoming commercial network with services leveling the commercial incentives

Best Effort Service

- Ideological background
 - Network is used only with good intent and need
- Turned to battle field
 - As fast and soon as possible
- Customer model
 - Access to the ‘Internet’
 - Possibility to use shared information resources
- Basis
 - Connectionless packet forwarding
Best Effort Router

- Packets are forwarded based on their destination address
- Scheduling and queueing
 - FCFS
- Equal treatment

![Best Effort Router Diagram](image)

Differentiated Services

- Identification of which parallel best effort network packet is destined, is coded in each packet
 - IPv4 ToS field is reformatted
 - No routing nor precedence
 - Generic class identifier

![Differentiated Services Diagram](image)

DiffServ Router

- Packets are forwarded based on the destination address and class information
- Scheduling and queueing is done based on the class information

![DiffServ Router Diagram](image)
DiffServ Router

- DiffServ router has one additional element in datapath compared to basic Best Effort router:
 - Conditioner
- Control plane of a DiffServ router has one extra element ie policy controller, which is responsible of internal management and configuration of conditioner and scheduler.

DiffServ Conditioner

- Traffic Conditioner is constructed a set of:
 - Classifiers
 - Responsible of logical separation of packet streams
 - Meters
 - Responsible of rate metering of logical streams
 - Markers
 - Responsible of actions based on metering results and predefined thresholds

DiffServ PHB

- Per hop behavior is block which contains queue management methods required to implement desired service
 - Queues
 - Queue space management algorithms
 - Schedulers

DiffServ terminology

- Workload in DiffServ is divided between two inherently different types of routers
 - Edge routers
 - Core routers
- Edge routers are on the domain edge interfacing
 - Customer
 - Other ISP
- Edge routers are responsible of conditioning actions which eventually determine the logical network where packet is to be forwarded.
DiffServ terminology

- Logical network is concatenation of PHBs which interact together.
- These logical networks have target service called per domain behavior (PDB).
- Target service is loose definition for the goal of the logical network when it is provisioned and configured in a predefined way.
- Edge router chooses PDB for each packet which comes from the customer
 - Marks packet with DSCP of PHB used to implement PDB.

DiffServ

- Service decision in edge router can be based on:
 - **Metering result**
 - Rate based
 - **Predefined set of filters**
 - IP address is customer
 - TCP/UDP port is application
 - **User request**
 - Precoded DSCP
 - RSVP signaling

- Core routers do nothing but forwarding of packets based on the extra information in DSCP field of packets.
- Requires
 - Classifier to detect DSCP fields
 - PHB to implement forwarding behaviors

Service classes

- Differentiated Services is aligned between Best Effort and IntServ
- There is a counterpart for each IntServ service class in DiffServ
 - Guaranteed Service <-> Expedited Service
 - Controlled Load <-> Assured Forwarding

Expedited Forwarding (EF) [RFC2598]

- Leased line emulation
 - From destined ingress point to destined egress point
 - End-to-end service with
 - Low loss
 - Low latency
 - Low jitter
 - Assured bandwidth
EF

- Service commitment is **only** assured
 - Resources inside EF class are shared
 - Amount of other EF traffic influences to the value of delay, jitter and loss
 - Path is freely chosen
 - Delay constraint can not be held as the delay of paths are inherently different
 - No reservation is done
 - Provisioning is in the key role

EF

- **Leased Line**
 - Dedicated resources
 - Full isolation
 - No room for overflow
- **Virtual Leased Line**
 - Shared resources
 - Partial isolation
 - From other than leased line traffic
 - Can accommodate overflow
 - Vague service guarantee

- Control of service guarantee
 - Access control
 - Rate control
 - User control
 - Provisioning
 - At least sum of contracted rates is allocated to EF traffic
 - High priority in the network
 - Scheduled ahead of other traffic
 - Starvation of lower priorities?
 - Only small fraction of total link capacity (10−30%)?

Assured Forwarding (AF) [RFC2597]

- **Four** independent service classes
 - All packets of a flow are destined to one of the classes
 - No association of service level between the classes
- **Three** precedences in each class
 - Flow can have packets with different precedences
 - Order of packets in a flow is not allowed to change
 - Precedence can not be used to scheduling decisions inside the class

<table>
<thead>
<tr>
<th>Class</th>
<th>Precedence</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF11</td>
<td>AF21 AF31 AF41</td>
</tr>
<tr>
<td>AF12</td>
<td>AF22 AF32 AF42</td>
</tr>
<tr>
<td>AF13</td>
<td>AF23 AF33 AF43</td>
</tr>
<tr>
<td>AF14</td>
<td>AF24 AF34 AF44</td>
</tr>
<tr>
<td>AF15</td>
<td>AF25 AF35 AF45</td>
</tr>
<tr>
<td>AF16</td>
<td>AF26 AF36 AF46</td>
</tr>
<tr>
<td>AF17</td>
<td>AF27 AF37 AF47</td>
</tr>
<tr>
<td>AF18</td>
<td>AF28 AF38 AF48</td>
</tr>
<tr>
<td>AF19</td>
<td>AF29 AF39 AF49</td>
</tr>
<tr>
<td>AF20</td>
<td>AF30 AF40 AF50</td>
</tr>
</tbody>
</table>

- No end-to-end semantics
 - Service can be deployed as any to any service
 - Like today
 - Uncontrollable resource usage inside the network
 - Very vague QoS
 - Class / precedence in contrast to service guarantee???
AF

- **Class differentiation**
 - Associate timing
 - Real-time to Bulk
 - Associate money
 - First class to cattle class
 - Associate user
 - CEO to laundry man
 - Associate protocol
 - TCP / UDP
 - Associate application
 - Clustering of similar application types

- **Precedence differentiation**
 - Associate rate
 - Under/over subscription
 - The rest same as class based except timing can not be used

Based on previous

- **Best-Effort Service**
 - Connectionless
 - Aggregated state
 - Local session state

- **Differentiated Service**
 - Connection-oriented
 - End2End session state
 - Session signaling [RSVP]
 - Admission control
 - Leaky-bucket traffic control
 - CoS
 - Per-flow WFQ

- **Integrated Service**
 - Per-class WFQ
 - Per-class and/or per-flow WFQ

1 Border routers may keep track individual sessions if required by policing or multifield classification.

2 Scheduling depends on per hop behavior [PHB]. Minimum requirement is FIFO with multilevel RED.

AF

- Construct services based on previous aspects
 - Many dimensions of freedom
 - How to make sure that system can not be manipulated
 - User control vs Network control

Based on previous

- Only way the DiffServ brings something new of valuable is that traffic within the network is well engineered i.e. traffic types sharing common buffer needs to be with similar requirements
- Only way to achieve this is to let the network to do classification and differentiation
 - Users are not, at large, well enough educated to make wise choices for the service classes
 - Or they try to exploit some resource with malicious intent
Best Effort semantics

- Best Effort service
 - All packets are treated equally
 - Forwarding is based on the destination address
 - Packets are queued into single FIFO queue
 - During the time of congestion packets are dropped
 - From the tail of the queue
 » When there is no space in the queue
 » When average queue length goes above threshold
 - Access to the network is sold to the customers

Differentiated Services semantics

- Differentiated Services
 - Packets are differentiated to N parallel Best Effort networks
 - Each parallel network operates like basic Best Effort network with the exception that there can be priorities and other semantics associated to the service.
 - 'QoS' based network service is sold to the customer

EF semantics

- 'End–to–end' service
 - Single domain end–to–end
 - Quality is defined by two constrains:
 - Provisioning
 - Class should be provisioned with enough resources to handle worst case aggregate
 - Sharing
 - No resource reservation for individual flows.
 - Under and overflows possible
 - Timing and delays can not be held or guaranteed

AF semantics

- No end–to–end semantics
 - Service can be deployed
 - Point–to–point
 - Any–to–any
 - Uncontrollable resource usage inside the network
 - Problem of commons

Precedence -> drop probability

<table>
<thead>
<tr>
<th>Class</th>
<th>AF11</th>
<th>AF12</th>
<th>AF21</th>
<th>AF22</th>
<th>AF31</th>
<th>AF32</th>
<th>AF41</th>
<th>AF42</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AF13</td>
<td>AF13</td>
<td>AF33</td>
<td>AF33</td>
<td>AF43</td>
<td>AF43</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What a customer wants ...

• Lets face the music
 – Customer is only interested in the perceived quality
 • How things are rolling compared
 – Minute ago
 – Year ago
 – Customer is not interested in the novel technology which is behind the service
 – This means end-to-end service quality

End-to-end service

• What prohibits ???
 – Structure of DiffServ is based on local control (policies)
 • Classification based on the policies at the edge of the network
 • Forwarding based on the policies in the core of the network
 – We can stretch through single domain (ISP) with EF
 – We may stretch through single domain (ISP) with AF
• End-to-end
 – Is not within single ISP
 – Is between source and destination