
S-38.180 – Quality of
Service in Internet

Introduction to the Exercises

Timo Viipuri

8.10.2003

Exercise Subjects

1) General matters in doing the exercises
 Work environment
 Making the exercises and returning the reports

2) Introduction to NS-2 Network Simulator
 Basic understanding on how to work with it

Work Environment

● Class rooms: Maari-c and Maari-d
 http://www.hut.fi/atk/luokat/maari-c.html (Linux)
 http://www.hut.fi/atk/luokat/maari-d.html (Windows)

● Linux OS
 Beginners Guide:

➢ http://www.redhat.com/docs/manuals/linux/RHL-9-Manual/getting-started-guide
➢ http://linux.org.mt/article/terminal

 Command Reference:
➢ http://linux.nixcraft.com/linux_commands

Exercises

● Exercise schedule and material:
 http://www.netlab.hut.fi/opetus/s38180/s03/schedule.shtml

● Each exercise session (2 hrs) consists of:
 (Review of the previous exercise)
 Introduction to the new exercise
 Begin work on the simulations with course staff present

● Do all the exercises in the Computing Centre's computers
 The NS-2 software found there is not the standard

distribution -> some exercises won't work elsewhere

Exercise reports

● Hard deadline for all reports is October 29th, 4 pm
 It is advised to return reports before the next exercise
 Return format is either PDF or paper

● Two types of grading depending on the exercise:

1. Fail / Pass or

2. Fail / Satisfactory / Good / Excellent

● All exercises must be passed to complete the course
● Exercise points are summed up and scaled to 1-6

 Used in the exam grading to replace the points from the
lowest scoring answer

S-38.180 – Quality of
Service in Internet

Exercise 1: NS-2 Network Simulator

Timo Viipuri

8.10.2003

Exercise Objectives

● To familiarize yourself with the work
environment

● To learn to work with NS-2 at the level that
you can:
1.Write simple simulation scripts

2.Read and understand more complex simulation
scripts

Tasks of the Day

1. A few words about the background and structure of
NS-2
• to give you some idea of what you are working

with

2. Line-by-line study of a simple simulation scenario
• to explain the minimum requirements needed to

create a simulation

3. Begin making your own simulation
• to get a hands-on feeling on the simulator and

prepare you for the later exercises

NS-2 Forewords

● Began as a variant of the REAL network simulator
in 1989

● Open source software
 Possible to tailor the code to exactly fit the needs
 Thousands of developers => rapid increase in

functionality

● Nowadays it is argueably the most popular network
simulation tool in the world
 Used extensively by both businesses and

universities

NS-2 Software
Structure

● NS-2 uses two programming languages to combine
efficiency and ease of extentability
 C++
 OTCL (Object Tool Command Language)

● NS-2 software is written in both C++ and OTCL
 Generally doesn't need to be modified

● Simulation scripts are written in OTCL
 Used to setup and control the simulation

NS-2 Software
Structure 2

● Simulator software is
separated to 3 layers:
1. Basic functionality:

C++

2. Experimental protocols
and complex
applications: OTCL

3. Simulation control
scripts: OTCL

Our focus is here

Simulation Scripts

● Used to set-up a simulation scenario
 Network topology
 Traffic agents
 Simulation events, e.g. when to start sending data
 Gathering results: monitoring and tracing

● Written in OTCL
 No need to compile; scripts are interpreted at run-

time

NAM – Network Animator

● Animation tool for
graphically viewing
simulation results

● Useful for
examining simple
simulations

Simulation Example
● Topology

 A network of two nodes connected with a duplex link
➢ Bandwidth: 5 Mbps
➢ Packet delay: 10 ms

● Traffic agents
 1 TCP-connection
 1 UDP-connection with a CBR-traffic generator

● Simulation events
 TCP starts sending 15 kB of data at 0.5 s
 UDP starts sending at a rate of 800 kbps at 0.2 s and stops at 0.8 s

● Gathering data
 Trace all packet events

Example 2: Topology

● Create nodes n0 and n1
set n0 [$ns node]

set n1 [$ns node]

● Create a duplex-link between the nodes
$ns duplex-link $n0 $n1 5Mb 10ms DropTail

Assign a variable n0

Create a node and assign it to variable n0

Call procedure 'duplex-link'
of object $ns

Set link between nodes n1 and n2

Bandwidth 5Mbps,
delay 10ms

Buffer management
method: DropTail

Example 3: UDP-agents

● Create UDP- and null-agents
set udp0 [new Agent/UDP]

set null0 [new Agent/Null]

● Attach them to nodes n0 and n1
$ns attach-agent $n0 $udp0

$ns attach-agent $n1 $null0

● Connect the agents
$ns connect $udp0 $null0

Parameters: $node $agent

A null-agent acts as an UDP-sink

Parameters: $agent $agent

● Create a CBR traffic source
set cbr0 [new Application/Traffic/CBR]

● Set traffic parameters
$cbr0 set packetSize_ 500

$cbr0 set interval_ 0.005

● Attach the traffic generator to an agent
$cbr0 attach-agent $udp0

Example 4: CBR-traffic

Application type

Time interval
between packets

⇒SendRate=8 * 500 b
0.005 s

=800kbps

● Create a TCP-connection pair
set clnt0 [new Agent/TCP/FullTcp]

set srvr0 [new Agent/TCP/FullTcp]

● Attach agents to nodes
$ns attach-agent $n0 $srvr0

$ns attach-agent $n1 $clnt0

● Connect the agents
$ns connect $srvr0 $clnt0

● Assign the client-agent to listening mode
$clnt0 listen

Example 5: TCP-agents

FullTcp includes a three-way
handshake and tear-down

Example 6: Events

● Schedule events
$ns at 0.2 "$cbr0 start"

$ns at 0.5 "$srvr0 sendmsg 15000 \"MSG_EOF\""

$ns at 0.8 "$cbr0 stop"

● Call the finish procedure after 1.0 s of simulation time
$ns at 1.0 "finish"

● Start the simulation in the end of the script
$ns run

Launch the quoted command at 0.2 s

Start sending CBR-data

Send 15 kB of TCP-data

Stop sending CBR-data at 0.8 s

Example 7: Tracing

● Open files for writing
set nsf [open example.ns w]

set namf [open example.nam w]

● Set trace types
$ns trace-all $nsf

$ns namtrace-all $namf

File handle in the simulation Name of the file

Open the file for writing

Trace all links

Output file handle

Trace all links for NAM (Network Animator)

Example 8: Results

● Sample of the packet trace file:
+ 0.535 0 1 udp 500 ------- 1 0.0 1.0 7 7

- 0.535 0 1 udp 500 ------- 1 0.0 1.0 7 7

r 0.5458 0 1 udp 500 ------- 1 0.0 1.0 7 7

Trace event

Time (s)

Link source and
destination IDs

Packet type

Packet size (B)

Flags
Flow ID

Source and destination
nodes

Packet sequence
number and unique
packet ID

Simulation: Link Delay

● Topology
 1 FTP client

➢ Node 0

 3 FTP servers
➢ Nodes 2-4

● Study the effect of
link delay to the throughput
of a TCP-connection

4

2

13 05 Mbps
20 ms

10 Mbps
? ms

10 Mbps
? ms

10 Mbps
? ms

Random Numbers

● NS-2 produces only pseudo-random numbers
 they aren't random but only appear to be

● A seed value is needed for the generation of pseudo-
random numbers
 If the seed value is the same the number sequence will be the

same

● In NS-2 the seed value is modified with:
''$defaultRNG seed 1'',
 using seed 0 will cause a random seed to be generated on each

new simulation

● e.g. RED uses random numbers to calculate the drop probability

NS-2 Material

● Development pages:
 http://www.isi.edu/nsnam/ns
 Especially useful topics:

➢ "Ns manual"
➢ "Mark Greis's tutorial"

 Visit them!

● TCL tutorials
 http://users.belgacom.net/bruno.champagne/tcl.html

 http://hegel.ittc.ukans.edu/topics/tcltk/tutorial-noplugin

● OTCL tutorial
 http://nestroy.wi-inf.uni-essen.de/Lv/gui/otcl

