

Lic.(Tech.) Marko Luoma (13/47)

DiffServ terminology

- Logical network is concatenation of PHBs which interact together.
- These logical networks have target service called per domain behavior (PDB).
- Target service is loose definition for the goal of the logical network when it is provisioned and configured in a predefined way.
- · Edge router chooses PDB for each packet which comes from the customer
 - Marks packet with DSCP of PHB used to implement PDB

Lic.(Tech.) Marko Luoma (14/47)

DiffServ

- Service decission in edge router can be based on:
 - Metering result
 - Rate based
 - Predefined set of filters
 - IP address ie customer
 - TCP/UDP port ie application
 - User request
 - Precoded DSCP
 - RSVP signaling

- Core routers do nothing but forwarding of packets based on the extra information in DSCP field of packets
- Requires
 - Classifier to detect DSCP fields
 - PHB to implement forwarding behaviors

Lic.(Tech.) Marko Luoma (21/47)

• Under/over subscription

exept timing can not be used

- The rest same as class based

Precende differentiation

- Associate rate

AF

- Class differentiation
 - Associate timing
 - Real-time to Bulk
 - Associate money
 - First class to cattle class
 - Associate user
 - · CEO to laundry man
 - Associate protocol
 - TCP / UDP
 - Associate application
 - Clustering of similar application types

¹ Border routers may keep track individual sessions if required by policing or multifield classification.
 ² Scheduling depends on per hop behavior [PHB]. Minimum requirement is FIFO with multilevel RED.

HELENKI UNIVERSITY OF TECHNOLOGY Newsoling Informery

Lic.(Tech.) Marko Luoma (22/47)

AF

- · Construct services based on previous aspects
 - Many dimensions of freedom
 - How to make sure that system can not be manipulated
 - User control vs Network control

HELSINKI UNIVERSITY OF TECHNOLOGY Networking laboratory

Lic.(Tech.) Marko Luoma (24/47)

Nasty thoughts

- Can we find justification for DiffServ ?
 - No provable service logic
 - No clear structure of service
 - Additional management
- Lets try it through a chain of thoughts ...

Lic.(Tech.) Marko Luoma (25/47)

Goals

- User standpoint
 - Get a good service (with a extra money get better service)
- Operator standpoint
 - Get higher revenues from the <u>same infrastructure</u> than with the best effort service

Lic.(Tech.) Marko Luoma (27/47)

Number of classes

- Best Effort network (1 class) does not have any control over traffic mix

 Applications interfere the other
- DiffServ with two classes (VoIP separated to own class) shows that there is a new division of resources between TCP applications
- DiffServ with two classes and 2 priorities reveals the importance of access policing. Rates of the application groups tend to get higher
- DiffServ with three classes finally shows the difference between HTTP and FTP

Lic.(Tech.) Marko Luoma (26/47)

Quick simulation ...

- How to achieve reasonable gain from differentiation with as little extra management as possible
 - As few classes as possible
- Lets look some simulations to find out what happens between three different categories of applications
 - Real-Time UDP (VoIP)
 - Aggressive TCP (HTTP)Friendly TCP (FTP)

HELEINKI UNIVERSITY OF TECHNOLOGY

Lic.(Tech.) Marko Luoma (28/47)

Number of classes

- Justification for the DiffServ comes however here
 - Service provider implementing DiffServ can pack allmost 50% traffic to the network that one not using DiffServ
 - Number of packet drops and timeouts is much lower than before
 - Higher revenues from the same infrastructure

Lic.(Tech.) Marko Luoma (29/47)

Based on previous

- · Based on previous
 - Only way the DiffServ brings something new of valuable is that traffic within the network is well engineered i.e. traffic types sharing common buffer needs to be with similar requirements
 - Only way to achieve this is to <u>let the network to do classification</u> and differentiation
 - Users are not, at large, well enough educated to make wise choices for the service classes
 - Or they try to exploit some resource with malicious intent

Lic.(Tech.) Marko Luoma (30/47)

Best Effort semantics

- Best Effort -service
 - All packets are treated equally
 - · Forwarding is based on the destination address
 - · Packets are queued into single FIFO queue
 - During the time of congestion packets are dropped
 - From the tail of the queue
 - » When there is no space in the queue
 - » When agerage queue length goes above threshold
 - Access to the network is sold to the customers

Lic.(Tech.) Marko Luoma (31/47)

Differentiated Services semantics

- Differentiated Services
 - Packets are differentiated to N parallel Best Effort networks
 - Each parallel network operates like basic Best Effort network with the exeption that there can be priorities and other semantics associated to the service.
 - 'QoS' based network service is sold to the customer

HELSINKI UNIVERSITY OF TECHNOLOGY Networking laboratory

Lic.(Tech.) Marko Luoma (32/47)

EF semantics

- 'End-to-end' service
 - Single domain end-to-end
 - Quality is defined by two constrains:
 - Provisioning
 - Class should be provisioned with enough resources to handle worst case aggregate
 - Sharing
 - No resource reservation for individual flows.
 - Under and overflows possible
 - Timing and delays can not be held or guaranteed

Lic.(Tech.) Marko Luoma (42/47)

Lic.(Tech.) Marko Luoma (44/47)

RSVP

Local Network

(IntServ)

Lic.(Tech.) Marko Luoma (45/47)

Reality check

- Are we rotating things back to IntServ ?
 - BB:s require knowledge from the network (offered load, provisioning)
 - By measuring itself
 - By signaling from the users
 - BB:s modify conditioning and forwarding actions of network routers
- What is the difference to the IntServ ?
 - If we provide end-to-end service we need fixed routes and resources that at the minimum match the requirements
 - · We need state information somewhere
 - Centralized DiffServ BB:s
 - Distributed IntServ routers

Lic.(Tech.) Marko Luoma (47/47)

Conclusion

- Differentiated Services is service architecture which allows to build N locically separated Best Effort networks into a single physical network
- Differentiated Services provides tools to offer QoS which is only assured
- Differentiated Services does not provide end-to-end semantics to the services which are build upon it
- End-to-end semantics are only achieved with outside intelligence like bandwidth brokers

Lic.(Tech.) Marko Luoma (46/47)

Reality check

- Is it so that we tend to re-invent the wheel
 - Sometimes it may not be bad thing
 - Sometimes we dare to say it straight to the people

http://www.caspiannetworks .com