
Helsinki University of Technology

Department of Electrical and Communication Engineering

Quality of Service in Internet

Exercise 2: Simulation of access control

and queue management methods

Due date: 25.10.2002 at 0900 hours
Delivery: Paper report to the course locker

Contents

Contents i

1 Introduction 1

1.1 Network Simulator 2 . 2

2 Simulator code 3

2.1 Create topology . 11
2.1.1 Nodes . 11
2.1.2 Links . 14
2.1.3 Rate control mechanisms 16

2.2 Probing the information . 17
2.2.1 Starting event monitoring 18
2.2.2 Trace �le format . 18

2.3 Controlling simulation . 19

3 Exercise 21

i

Chapter 1

Introduction

This is exercise for the Helsinki Summer School course Quality of Service in
Internet. This exercise makes you familiar with:

1. ns2. A network simulator which is one of the most used simulation tools
in academic world.

2. Rate control mechanisms which could be used to mark, limit or shape
the Internet tra�c

Tool is installed into SUN workstations in Helsinki University of
Technology department of Electrical and Communications Engi-
neering workstation room B215. You can run it there or down-
load it to your own computer from the world wide distribution
site http://www.isi.edu/nsnam/ns/index.html. In HUT program can
be located from the path /p/gen/courses/S38/S38.180/Exercise2/.
To be able to use it, you must �rst run command
/p/gen/courses/S38/S38.180/Exercise2/usens2.sh or usens2.csh depending
on shell you use.

To start, make working directory into your home directory and copy �les
from the directory /p/gen/courses/S38/S38.180/Exercise2/doc/HT2.tar to
it. These �les are the to core which you must make modi�cations during the
exercise.

Department has set quotas to workstations, so you have to run your simula-
tions in /tmp directory of workstations. Make temporary working directory
under /tmp. Copy processed results to your working directory and delete
temporary working directory.

1

CHAPTER 1. INTRODUCTION

1.1 Network Simulator 2

Tool used in this exercise is network simulator 2. It is freely availabale and
distributable object oriented simulator. In glance, it contains kernel code
developed in C++. This kernel code contains class hierarchies for ready
made building blocks. These building blocks are translated to Otcl to make
construction of 'quick and dirty' simulations easier.

If you have any problems with ns2, I recommend you to read the tutorial
page in http://www.isi.edu/nsnam/ns/tutorial/index.html.

2

Chapter 2

Simulator code

This chapter present simulator code which is used in this exercise. Following
listing shows whole code as one unit. To become familiar the structure of ns,
we dissect code into peaces and explain what they do in detail.

set ns [new Simulator]

set testTime 25

set rate11 50000
set cir11 50000
set cbs11 2000

set rate21 50000
set cir21 50000
set cbs21 2000

set rate31 50000
set cir31 50000
set cbs31 2000

set rate41 50000
set cir41 50000
set cbs41 2000

set rate51 50000
set cir51 50000
set cbs51 2000

set cir12 350000
set cbs12 20000

set cir22 350000
set cbs22 20000

set cir32 350000

3

CHAPTER 2. SIMULATOR CODE

set cbs32 20000

set cir42 350000
set cbs42 20000

set cir52 350000
set cbs52 20000

set TCP_Packet_Size 1000
set UDP_Packet_Size 160

Open a file for writing the trace data
set trace_all [open out.all w]

Trace all events for post processing with animator (nam) or with any
other software
$ns trace-all $trace_all

Set up the network topology shown at the top of this file:
set s11 [$ns node]
set s12 [$ns node]
set s21 [$ns node]
set s22 [$ns node]
set s31 [$ns node]
set s32 [$ns node]
set s41 [$ns node]
set s42 [$ns node]
set s51 [$ns node]
set s52 [$ns node]
set e1 [$ns node]
set e2 [$ns node]
set e3 [$ns node]
set e4 [$ns node]
set e5 [$ns node]
set c1 [$ns node]
set c2 [$ns node]
set dest [$ns node]

$ns duplex-link $s11 $e1 10Mb 5ms DropTail
$ns duplex-link $s12 $e1 10Mb 5ms DropTail
$ns duplex-link $s21 $e2 10Mb 5ms DropTail
$ns duplex-link $s22 $e2 10Mb 5ms DropTail
$ns duplex-link $s31 $e3 10Mb 5ms DropTail
$ns duplex-link $s32 $e3 10Mb 5ms DropTail
$ns duplex-link $s41 $e4 10Mb 5ms DropTail
$ns duplex-link $s42 $e4 10Mb 5ms DropTail
$ns duplex-link $s51 $e5 10Mb 5ms DropTail
$ns duplex-link $s52 $e5 10Mb 5ms DropTail

$ns simplex-link $e1 $c1 10Mb 5ms dsRED/edge
$ns simplex-link $e2 $c1 10Mb 5ms dsRED/edge
$ns simplex-link $e3 $c1 10Mb 5ms dsRED/edge

4

$ns simplex-link $e4 $c1 10Mb 5ms dsRED/edge
$ns simplex-link $e5 $c1 10Mb 5ms dsRED/edge

$ns simplex-link $c1 $e1 10Mb 5ms dsRED/core
$ns simplex-link $c1 $e2 10Mb 5ms dsRED/core
$ns simplex-link $c1 $e3 10Mb 5ms dsRED/core
$ns simplex-link $c1 $e4 10Mb 5ms dsRED/core
$ns simplex-link $c1 $e5 10Mb 5ms dsRED/core

$ns simplex-link $c1 $c2 2Mb 50ms dsRED/core
$ns simplex-link $c2 $c1 2Mb 50ms dsRED/core

$ns simplex-link $c2 $dest 10Mb 5ms dsRED/core
$ns simplex-link $dest $c2 10Mb 5ms dsRED/edge

Set DS RED parameters from Edge1 to Core1:
set qE1C1 [[$ns link $e1 $c1] queue]
$qE1C1 meanPktSize 1000
$qE1C1 set numQueues_ 1
$qE1C1 setNumPrec 2
$qE1C1 addPolicyEntry [$s11 id] [$dest id] TokenBucket 10 $cir11 $cbs11
$qE1C1 addPolicyEntry [$s12 id] [$dest id] TokenBucket 10 $cir12 $cbs12
$qE1C1 addPolicerEntry TokenBucket 10 11
$qE1C1 addPHBEntry 10 0 0
$qE1C1 addPHBEntry 11 0 1
$qE1C1 configQ 0 0 10 40 0.02
$qE1C1 configQ 0 1 0 0 1

Set DS RED parameters from Core1 to Edge1:
set qC1E1 [[$ns link $c1 $e1] queue]
$qC1E1 meanPktSize 1000
$qC1E1 set numQueues_ 1
$qC1E1 setNumPrec 2
$qC1E1 addPHBEntry 10 0 0
$qC1E1 addPHBEntry 11 0 1
$qC1E1 configQ 0 0 10 40 0.02
$qC1E1 configQ 0 1 0 0 1

Set DS RED parameters from Edge2 to Core1:
set qE2C1 [[$ns link $e2 $c1] queue]
$qE2C1 meanPktSize 1000
$qE2C1 set numQueues_ 1
$qE2C1 setNumPrec 2
$qE2C1 addPolicyEntry [$s21 id] [$dest id] TokenBucket 10 $cir21 $cbs21
$qE2C1 addPolicyEntry [$s22 id] [$dest id] TokenBucket 10 $cir22 $cbs22
$qE2C1 addPolicerEntry TokenBucket 10 11
$qE2C1 addPHBEntry 10 0 0
$qE2C1 addPHBEntry 11 0 1
$qE2C1 configQ 0 0 10 40 0.02
$qE2C1 configQ 0 1 0 0 1

5

CHAPTER 2. SIMULATOR CODE

Set DS RED parameters from Core1 to Edge2:
set qC1E2 [[$ns link $c1 $e2] queue]
$qC1E2 meanPktSize 1000
$qC1E2 set numQueues_ 1
$qC1E2 setNumPrec 2
$qC1E2 addPHBEntry 10 0 0
$qC1E2 addPHBEntry 11 0 1
$qC1E2 configQ 0 0 10 40 0.02
$qC1E2 configQ 0 1 0 0 1

Set DS RED parameters from Edge3 to Core1:
set qE3C1 [[$ns link $e3 $c1] queue]
$qE3C1 meanPktSize 1000
$qE3C1 set numQueues_ 1
$qE3C1 setNumPrec 2
$qE3C1 addPolicyEntry [$s31 id] [$dest id] TokenBucket 10 $cir31 $cbs31
$qE3C1 addPolicyEntry [$s32 id] [$dest id] TokenBucket 10 $cir32 $cbs32
$qE3C1 addPolicerEntry TokenBucket 10 11
$qE3C1 addPHBEntry 10 0 0
$qE3C1 addPHBEntry 11 0 1
$qE3C1 configQ 0 0 10 40 0.02
$qE3C1 configQ 0 1 0 0 1

Set DS RED parameters from Core1 to Edge3:
set qC1E3 [[$ns link $c1 $e3] queue]
$qC1E3 meanPktSize 1000
$qC1E3 set numQueues_ 1
$qC1E3 setNumPrec 2
$qC1E3 addPHBEntry 10 0 0
$qC1E3 addPHBEntry 11 0 1
$qC1E3 configQ 0 0 10 40 0.02
$qC1E3 configQ 0 1 0 0 1

Set DS RED parameters from Edge4 to Core1:
set qE4C1 [[$ns link $e4 $c1] queue]
$qE4C1 meanPktSize 1000
$qE4C1 set numQueues_ 1
$qE4C1 setNumPrec 2
$qE4C1 addPolicyEntry [$s41 id] [$dest id] TokenBucket 10 $cir41 $cbs41
$qE4C1 addPolicyEntry [$s42 id] [$dest id] TokenBucket 10 $cir42 $cbs42
$qE4C1 addPolicerEntry TokenBucket 10 11
$qE4C1 addPHBEntry 10 0 0
$qE4C1 addPHBEntry 11 0 1
$qE4C1 configQ 0 0 10 40 0.02
$qE4C1 configQ 0 1 0 0 1

Set DS RED parameters from Core4 to Edge1:
set qC1E4 [[$ns link $c1 $e4] queue]

6

$qC1E4 meanPktSize 1000
$qC1E4 set numQueues_ 1
$qC1E4 setNumPrec 2
$qC1E4 addPHBEntry 10 0 0
$qC1E4 addPHBEntry 11 0 1
$qC1E4 configQ 0 0 10 40 0.02
$qC1E4 configQ 0 1 0 0 1

Set DS RED parameters from Edge5 to Core:
set qE5C1 [[$ns link $e5 $c1] queue]
$qE5C1 meanPktSize 1000
$qE5C1 set numQueues_ 1
$qE5C1 setNumPrec 2
$qE5C1 addPolicyEntry [$s51 id] [$dest id] TokenBucket 10 $cir51 $cbs51
$qE5C1 addPolicyEntry [$s52 id] [$dest id] TokenBucket 10 $cir52 $cbs52
$qE5C1 addPolicerEntry TokenBucket 10 11
$qE5C1 addPHBEntry 10 0 0
$qE5C1 addPHBEntry 11 0 1
$qE5C1 configQ 0 0 10 40 0.02
$qE5C1 configQ 0 1 0 0 1

Set DS RED parameters from Core1 to Edge5:
set qC1E5 [[$ns link $c1 $e5] queue]
$qC1E5 meanPktSize 1000
$qC1E5 set numQueues_ 1
$qC1E5 setNumPrec 2
$qC1E5 addPHBEntry 10 0 0
$qC1E5 addPHBEntry 11 0 1
$qC1E5 configQ 0 0 10 40 0.02
$qC1E5 configQ 0 1 0 0 1

Set DS RED parameters from Core1 to Core2:
set qC1C2 [[$ns link $c1 $c2] queue]
$qC1C2 meanPktSize 1000
$qC1C2 set numQueues_ 1
$qC1C2 setNumPrec 2
$qC1C2 addPHBEntry 10 0 0
$qC1C2 addPHBEntry 11 0 1
$qC1C2 configQ 0 0 10 40 0.02
$qC1C2 configQ 0 1 0 0 1

Set DS RED parameters from Core2 to Core1:
set qC2C1 [[$ns link $c2 $c1] queue]
$qC2C1 meanPktSize 1000
$qC2C1 set numQueues_ 1
$qC2C1 setNumPrec 2
$qC2C1 addPHBEntry 10 0 0
$qC2C1 addPHBEntry 11 0 1
$qC2C1 configQ 0 0 10 40 0.02

7

CHAPTER 2. SIMULATOR CODE

$qC2C1 configQ 0 1 0 0 1

Set DS RED parameters from Dest to Core2:
set qDC2 [[$ns link $dest $c2] queue]
$qDC2 meanPktSize 1000
$qDC2 set numQueues_ 1
$qDC2 setNumPrec 2
$qDC2 addPolicyEntry [$dest id] [$s11 id] TokenBucket 10 $cir11 $cbs11
$qDC2 addPolicyEntry [$dest id] [$s12 id] TokenBucket 10 $cir12 $cbs12
$qDC2 addPolicyEntry [$dest id] [$s21 id] TokenBucket 10 $cir21 $cbs21
$qDC2 addPolicyEntry [$dest id] [$s22 id] TokenBucket 10 $cir22 $cbs22
$qDC2 addPolicyEntry [$dest id] [$s31 id] TokenBucket 10 $cir31 $cbs31
$qDC2 addPolicyEntry [$dest id] [$s32 id] TokenBucket 10 $cir32 $cbs32
$qDC2 addPolicyEntry [$dest id] [$s41 id] TokenBucket 10 $cir41 $cbs41
$qDC2 addPolicyEntry [$dest id] [$s42 id] TokenBucket 10 $cir42 $cbs42
$qDC2 addPolicyEntry [$dest id] [$s51 id] TokenBucket 10 $cir51 $cbs51
$qDC2 addPolicyEntry [$dest id] [$s52 id] TokenBucket 10 $cir52 $cbs52
$qDC2 addPolicerEntry TokenBucket 10 11
$qDC2 addPHBEntry 10 0 0
$qDC2 addPHBEntry 11 0 1
$qDC2 configQ 0 0 10 40 0.02
$qDC2 configQ 0 1 0 0 1

Set DS RED parameters from Core2 to Dest:
set qC2D [[$ns link $c2 $dest] queue]
$qC2D meanPktSize 1000
$qC2D set numQueues_ 1
$qC2D setNumPrec 2
$qC2D addPHBEntry 10 0 0
$qC2D addPHBEntry 11 0 1
$qC2D configQ 0 0 10 40 0.02
$qC2D configQ 0 1 0 0 1

Set up one FTP connection between each source and the destination:
set udp11 [new Agent/UDP]
$ns attach-agent $s11 $udp11
set cbr11 [new Application/Traffic/CBR]
$cbr11 attach-agent $udp11
$cbr11 set packet_size_ $UDP_Packet_Size
$udp11 set packetSize_ $UDP_Packet_Size
$cbr11 set rate_ $rate11
set null11 [new Agent/Null]
$ns attach-agent $dest $null11
$ns connect $udp11 $null11

set udp21 [new Agent/UDP]
$ns attach-agent $s21 $udp21
set cbr21 [new Application/Traffic/CBR]

8

$cbr21 attach-agent $udp21
$cbr21 set packet_size_ $UDP_Packet_Size
$udp21 set packetSize_ $UDP_Packet_Size
$cbr21 set rate_ $rate21
set null21 [new Agent/Null]
$ns attach-agent $dest $null21
$ns connect $udp21 $null21

set udp31 [new Agent/UDP]
$ns attach-agent $s31 $udp31
set cbr31 [new Application/Traffic/CBR]
$cbr31 attach-agent $udp31
$cbr31 set packet_size_ $UDP_Packet_Size
$udp31 set packetSize_ $UDP_Packet_Size
$cbr31 set rate_ $rate31
set null31 [new Agent/Null]
$ns attach-agent $dest $null31
$ns connect $udp31 $null31

set udp41 [new Agent/UDP]
$ns attach-agent $s41 $udp41
set cbr41 [new Application/Traffic/CBR]
$cbr41 attach-agent $udp41
$cbr41 set packet_size_ $UDP_Packet_Size
$udp41 set packetSize_ $UDP_Packet_Size
$cbr41 set rate_ $rate41
set null41 [new Agent/Null]
$ns attach-agent $dest $null41
$ns connect $udp41 $null41

set udp51 [new Agent/UDP]
$ns attach-agent $s51 $udp51
set cbr51 [new Application/Traffic/CBR]
$cbr51 attach-agent $udp51
$cbr51 set packet_size_ $UDP_Packet_Size
$udp51 set packetSize_ $UDP_Packet_Size
$cbr51 set rate_ $rate51
set null51 [new Agent/Null]
$ns attach-agent $dest $null51
$ns connect $udp51 $null51

set tcp12 [new Agent/TCP]
$ns attach-agent $s12 $tcp12
set ftp12 [new Application/FTP]
$ftp12 attach-agent $tcp12
$tcp12 set packetSize_ $TCP_Packet_Size
set sink12 [new Agent/TCPSink]
$ns attach-agent $dest $sink12
$ns connect $tcp12 $sink12

set tcp22 [new Agent/TCP]
$ns attach-agent $s22 $tcp22

9

CHAPTER 2. SIMULATOR CODE

set ftp22 [new Application/FTP]
$ftp22 attach-agent $tcp22
$tcp22 set packetSize_ $TCP_Packet_Size
set sink22 [new Agent/TCPSink]
$ns attach-agent $dest $sink22
$ns connect $tcp22 $sink22

set tcp32 [new Agent/TCP]
$ns attach-agent $s32 $tcp32
set ftp32 [new Application/FTP]
$ftp32 attach-agent $tcp32
$tcp32 set packetSize_ $TCP_Packet_Size
set sink32 [new Agent/TCPSink]
$ns attach-agent $dest $sink32
$ns connect $tcp32 $sink32

set tcp42 [new Agent/TCP]
$ns attach-agent $s42 $tcp42
set ftp42 [new Application/FTP]
$ftp42 attach-agent $tcp42
$tcp42 set packetSize_ $TCP_Packet_Size
set sink42 [new Agent/TCPSink]
$ns attach-agent $dest $sink42
$ns connect $tcp42 $sink42

set tcp52 [new Agent/TCP]
$ns attach-agent $s52 $tcp52
set ftp52 [new Application/FTP]
$ftp52 attach-agent $tcp52
$tcp52 set packetSize_ $TCP_Packet_Size
set sink52 [new Agent/TCPSink]
$ns attach-agent $dest $sink52
$ns connect $tcp52 $sink52

proc finish
global ns trace_all
close $trace_all

#Following are awk scripts to process trace of all events.

exec awk

if (($1 == "r") && ($4 == "17")) print $2, $9, $6

out.all > out.rec

exit 0

10

2.1. CREATE TOPOLOGY

$qE1C1 printPolicyTable
$qE1C1 printPolicerTable
$qE1C1 printPHBTable

$ns at 0.0 "$cbr11 start"
$ns at 0.0 "$cbr21 start"
$ns at 0.0 "$cbr31 start"
$ns at 0.0 "$cbr41 start"
$ns at 0.0 "$cbr51 start"
$ns at 0.0 "$ftp12 start"
$ns at 0.0 "$ftp22 start"
$ns at 0.0 "$ftp32 start"
$ns at 0.0 "$ftp42 start"
$ns at 0.0 "$ftp52 start"
$ns at 10.0 "$qE1C1 printStats"
$ns at 20.0 "$qE1C1 printStats"
$ns at $testTime "$cbr11 stop"
$ns at $testTime "$cbr21 stop"
$ns at $testTime "$cbr31 stop"
$ns at $testTime "$cbr41 stop"
$ns at $testTime "$cbr51 stop"
$ns at $testTime "$ftp12 stop"
$ns at $testTime "$ftp22 stop"
$ns at $testTime "$ftp32 stop"
$ns at $testTime "$ftp42 stop"
$ns at $testTime "$ftp52 stop"
$ns at [expr $testTime + 1.0] "finish"

$ns run

2.1 Create topology

Topology in ns is based on collection of nodes and links. Topology is ba-
sic requirement for the succesful simulation of particular scenario. Therefore
topology is so called base requirement and components od topology are de-
�ned in base level of ns. This is easily detectable with the declarations which
start by $ns.

2.1.1 Nodes

There is no di�erentiation between end systems and routers in creation of
topology, i.e. each node can be end system and/or router.

11

CHAPTER 2. SIMULATOR CODE

C2C1

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

Dest

E1
E2

E3

E4

E5

Figure 2.1: Topology of simulation

Node is created with command set s1 [$ns node]

s1 is the name for the node which is later on used as pointer to the node. [$ns
node] tells to the ns that properties of class node should be assigned to new
object named s1. When node is an end system, we must add protocols and
tra�c generation models to it. In our exercise we have two types of clients.

1. Tra�c sources

Tra�c sources use UDP and TCP as their transport protocol. Protocol
for the end system is created with commands

--><--
set udp1 [new Agent/UDP]
$ns attach-agent $s1 $udp1
set cbr1 [new Application/Traffic/CBR]
$cbr1 attach-agent $udp1
$cbr1 set packet_size_ $packetSize
$udp1 set packetSize_ $packetSize
$cbr1 set rate_ $rate1
--><--

--><--
set tcp10 [new Agent/TCP]
$ns attach-agent $s10 $tcp10
set ftp10 [new Application/FTP]
$ftp10 attach-agent $tcp10
$tcp10 set packetSize_ $packetSize
--><--

12

2.1. CREATE TOPOLOGY

Node
ent r y

Addr ess
Cl ass i f i er

Por t
Cl ass i f i er

Agent

Agent

Agent

Li nk Li nk Li nk

Onl y i n end sys t em

Figure 2.2: Construction of node in ns2

Where udp1 and tcp10 are the names for the protocol stacks. These
names are used for combining right node and source model to these
protocol stacks. [new Agent/UDP] and [new Agent/TCP] are used to
tell for ns to combine properties of class UDP and class TCP to new
objects named udp1 and tcp10. These classes inherit all features of
their parents, i.e. Agent.

Protocol stack is attached to particular node with the command $ns

attach-agent $s1 $udp1. Which combines node $s1 to protocol stack
$udp1 and node $s10 to protocol stack $tcp10 respectively.

Source type, i.e. tra�c generation pattern, is set by de�ning the client.

UDP protocol is attached to application which generates constant bit
rate tra�c. This is done �rst by de�ning the application set cbr1

[new Application/Traffic/CBR] and then attaching the application
to the transport protocol $cbr1 attach-agent $udp1. $cbr1 inherits
all features of Application, Tra�c and CBR. One of the features is that
CBR tra�c is de�ned by rate and packet size. These are de�ned by
$cbr1 set rate_ and $cbr1 set packet_size_. They are connected
to locally modi�able variables located at the beginning of tcl script.

TCP protocol is attached to FTP application. Client name is ftp10 and
its operation is de�ned in class class Application/FTP. FTP without

13

CHAPTER 2. SIMULATOR CODE

any additional parametrisation is a greedy tra�c source, i.e. it tries to
�ll the pipe full of its tra�c.

2. Tra�c sinks

Tra�c sinks are points where the �ow of information are terminated.
There are several di�erent types of sinks for di�erent stacks and proto-
col levels. We are not interested in the operation of TCP and UDP, so
we will terminate information �ows without any processing. We create
a TCP sink which is de�ned by class Agent/TCPSink and name it as
sink10. This sink then attached to the node dest. Sameway we create
UDP sink which is de�ned by class Agent/Null and attach that to same
destination node dest.

Clients are connected together (after the links are declared) with the com-
mand

--><--
$ns connect $udp1 $null1
$ns connect $tcp10 $sink10
--><--

This command connects clients at the level of transmission protocol together,
i.e. state is established on the TCP.

2.1.2 Links

Links are the other part of topology. Because nodes are universal, i.e. end
systems and routers share same construction, additional mechanisms are im-
plemented into the links. Links contain queues which in real world would
have been implemented in routers.

Li nk
ent r y

Queue Del ay Err or

Figure 2.3: Construction of link in ns2

Links are created with command

14

2.1. CREATE TOPOLOGY

--><--
$ns duplex-link $s1 $e1 10Mb 5ms DropTail
$ns simplex-link $e1 $e2 2Mb 50ms dsRED/edge
--><--

First parameter, duplex-link in command expresses the type of link. This
type may vary depending on what you are doing from simplex, duplex or
some special link, like CBQLink or IntServLink. We use in our exercise duplex
link to carry the data from source to access point and simplex links in core
network.

Second and third parameters refer from where to where link goes. End points
are nodes which are attached to the link, i.e. example shows link going from
s1 to e1. Ordering of end points does not account when we are talking about
duplex links. However, simplex links are directed based on the order of end
points.

Fourth parameter is the bandwidth (data rate) of the link. You may use
quali�ers k (kilo) and M (mega) as b (bit) and B (byte).

Fifth parameter is the delay of the link this has same idea as bandwidth you
may use m (milli) and u (mikro) as quali�ers.

Last parameter stands for queue management algorithm used in the queue.
Valid arguments are DropTail (FIFO), RED, dsRED/edge, dsREDcore,
CBQ, FQ, SFQ and DRR. We use DropTail everywhere else but at the core
network to have most straight forward simulation.

For visualisation in nam ns contains possibility to adjust topology on a way
you want. This is done with command

$ns duplex-link-op $s1 $e1 orient right-down

which makes possible to give orientational directions of links. Orientation is
in direction of from to to. Distance between two nodes comes from the delay.
All distances are scaled based on the shortest distance.

Additional parameters for the link can be given with same command
simplex-link-op. In command

$ns simplex-link-op $e1 $e2 queuePos 0.5

queue on link between e1 and e2 is monitored in nam visualisation.

15

CHAPTER 2. SIMULATOR CODE

2.1.3 Rate control mechanisms

Rate control mechanisms are implemented in Di�erentiated Services packet.
Forwarding is based on the modi�ed RED queue (one physical queue contains
three virtual queues). Di�erent RED parameters are used for di�erent virtual
queues, causing some virtual queue to have lenient operation while other are
more strained.

Base of the Di�Serv operation is the policy which is set for the simulation.
Policy declares how particular connection should be metered, marked or po-
liced during the simulation.

--><--
$qE2E1 addPolicyEntry [$dest id] [$s1 id] TSW2CM 20 $cir1
$qE2E1 addPolicyEntry [$dest id] [$s10 id] TSW2CM 10 $cir10
--><--

These policies de�ne connection which is under the control i.e. from $dest

to $s1 and $a10. Also the type of metering and marking is de�ned TSW2CM

which stands for Time Sliding Window Metering with Two Color Marking.
Two Color marking means simply in or out of pro�le marking. After the
type of policer a initial codepoint (20) for the packet is given. This codepoint
is degraded based on the metered result. Depending on the type of policer
there may be several parameters controlling the rate and/or burst size. In
TSW2CM's case there is only committed information rate (cir).

ns2 has build in support for following metering and marking combinations:

1. TSW2CM: Time Sliding Window Meter with Two Color Marker.
TSW2CM is controlled with single parameter Committed Information
Rate (CIR). CIR is the rate for which ISP o�ers QoS level commit-
ment. Tra�c falling out of pro�le is probabilistally marked to lower
precedence.

2. TSW3CM: Time Sliding Window Meter with Three Color Marker.
TSW3CM is controlled with two parameters Committed Information
Rate (CIR) and Peak Information Rate (PIR). CIR is the rate for which
ISP o�ers QoS level commitment. Tra�c falling out of CIR is proba-
bilistally marked to medium precedence. Tra�c falling out of PIR is
probabilistally marked to lowest precedence.

3. TokenBucket: Token Bucket uses CIR and committed burst size (CBS)
with two drop precedences. Packet is marked to lower precedence if it
falls out of pro�le de�ned by CIR and CBS (size of the token bucket).

16

2.2. PROBING THE INFORMATION

4. srTCM: Single Rate Three Color Marker uses combination of two token
buckets in cascade. Tra�c is metered by CIR, CBS and excess burst size
(EBS). Excess burst size is addtional burst level de�ned by second token
bucket. Tra�c falling in �rst bucket is marked to highest precedence.
Tra�c falling within second but not �rst token bucket is marked for
medium drop precedence. Tra�c falling out from both of the buckets
is marked to lowest precedence.

5. trTCM: Two Rate Three Color Marker uses a combination of two token
bucket in cascade. Tra�c is metered by CIR and CBS in �rst token
bucket, and PIR and peak burst size (PBS) in second token bucket.
Tra�c falling in �rst bucket is marked to highest precedence. Tra�c
falling within second but not �rst token bucket is marked for medium
drop precedence. Tra�c falling out from both of the buckets is marked
to lowest precedence.

Ones the policy is de�ned. Policers which are attached to policy need to be
parametrized. Parameters which they require are degraded marks which are
associated to their conditioning actions.

--><--
$qE1E2 addPolicerEntry TSW2CM 10 11
$qE1E2 addPolicerEntry TSW2CM 20 21
--><--

After the policy is completely established one must take care about for-
warding of the marked packets. Each codepoint (mark) needs to have as-
sociated forwarding treatment. Forwarding treatments are in Di�erentiated
Services called per hop behaviors (PHB). In ns2 PHB is determined only
on the level of queue and precendence which some codepoint re�ects $qE1E2
addPHBEntry 10 0 0. RED algorithms operating on the queues need also to
be paramtrised through $qE1E2 configQ 0 1 10 40 0.10

2.2 Probing the information

Event monitoring is special class of Tcl operation, where a Trace class object
is wrapped around monitored system.

17

CHAPTER 2. SIMULATOR CODE

2.2.1 Starting event monitoring

Event monitoring means that all events surrounding some object are recorded
into the trace �le. For that we need to open the trace �le and connect a handle
to that �le I/O.

--><--
set trace_all [open out.all w]
--><--

After the �le is opened events can be recorded to that. Simulator contains a
special commands to do that. Commands specify the object which is traced
and the handle to the �le where events are recorded. Following command

--><--
$ns trace-all $trace_all
--><--

records all events from the simulation to the �le pointed by handle
$trace_all. After the simulation trace bu�er must be cleared and the �le
closed

--><--
$ns flush-trace
close $trace_all
--><--

2.2.2 Trace �le format

Trace mechanism generates a trace �le where events are stored for post pro-
cessing. Trace �le contains information in a form of white space separated
table.

--><--
r 6.6938 4 5 tcp 1000 ------- 1 0.0 2.0 657 1301
+ 6.6938 5 2 tcp 1000 ------- 1 0.0 2.0 657 1301
- 6.6938 5 2 tcp 1000 ------- 1 0.0 2.0 657 1301
r 6.694155 1 4 tcp 1000 ------- 2 1.0 3.0 10 1356
+ 6.694155 4 5 tcp 1000 ------- 2 1.0 3.0 10 1356
d 6.694155 4 5 tcp 1000 ------- 2 1.0 3.0 10 1356
r 6.6946 0 4 tcp 1000 ------- 1 0.0 2.0 684 1357
--><--

18

2.3. CONTROLLING SIMULATION

First column of table represents the type of event. Event may be receive ('r'),
drop ('d'), engue ('+') or deque ('-').

Second column is the simulated time when the event occured. Time is given
in seconds from the beginning of simulation.

Third and fourth columns are source and destination nodes of event, i.e. they
show where the tracing of event took place and on which direction.

Fifth column expresses the type of packet that was traced. Type may be
protocol or action, depending on agent that generated the packet.

Sixth column indicates the packet size as encoded in IP header.

Seveth column (�������) represent �ags which may be coded in packets.

Eigth column is �ow id which is used to separate connections in aggregated
links and end points.

Nineth and tenth columns are source and destinations addresses. If special
addressing is used, this shows it. Otherwise it is the node numbers in decimal
format.

Eleventh column is the sequence number �eld. This �eld is used for protocols
and agents which make use of sequence numbers.

Twelvth column is the uniqueue id of packet. Each packet has uniqueue
id throughou the simulation. This makes easy to trace events which have
happened to a single packet on a path through the network.

2.3 Controlling simulation

Simulation is started and stopped with commands

--><--
$ns run
$ns at [expr $testTime + 1.0] "finish"
--><--

Finish command schedules the subroutine �nish at the time set by parameter
$testTime. Subroutine �nish is used to close trace �les, to do post processing
of information (not neccessary) and to plot trace information (not neccesary).
Last command in subroutine is exit which is used to terminate the program.

--><--

19

CHAPTER 2. SIMULATOR CODE

proc finish {} {
global ns trace_all
$ns flush-trace
close $trace_all

...
exit 0

}
--><--

Other events which must be scheduled are client start and stop times. These
events control tra�c generation within the network.

--><--
$ns at 0.0 "$cbr11 start"
$ns at 0.0 "$cbr21 start"
$ns at 0.0 "$ftp12 start"
$ns at 0.0 "$ftp22 start"
$ns at $testTime "$cbr11 stop"
$ns at $testTime "$cbr21 stop"
$ns at $testTime "$ftp12 stop"
$ns at $testTime "$ftp22 stop"

--><--

20

Chapter 3

Exercise

This exercise is about comparison of di�erent rate control methods in Inter-
net. Methods which are used here are token bucket and time sliding window
two color marker. Investigate the operation of di�erent metering and mark-
ing algorithms in a network which is used for transmission of mixed (5 UDP
clients and 5 TCP clients) tra�c.

Calculate how these rate control mechanisms distribute capacity to individual
connections in otherwise same network conditions. See how excess capacity
is distributed to the clients (proportionally to cir / rate / something else).
Use loose and strict policing (i.e. measured excess tra�c is admitted to lower
priority or measured excess tra�c is discarded). See how same parameters
e�ect the overall operation of di�erent client types. With TCP-tra�c check
the e�ect of di�erent round-trip times to actual capacity. What causes these
e�ects. Run overloaded and underloaded cases to see what happens if you
overutilize your infrastructure.

Write report (3-5 pages) explaining your �ndings of these rate control algo-
rithms. You can explain the operation of these algorithms and compare then
based on their structure. Also explain the sensitivity of these algorithms to
the case when type of client changes behind the access port. Is any of these
mechanisms superior to others and if is on what you base your argument.

21

