HELSINKI UNIVERSITY OF TECHNOLOGY
Department of Electrical and Communication Engineering

Quality of Service in Internet
Exercise 2: Simulation of access control
and queue management methods

Due date: 25.10.2002 at 0900 hours
Delivery: Paper report to the course locker

Contents

Contents

1

Introduction
1.1 Network Simulator 2 .

Simulator code

2.1 Create topology
2.1.1 Nodes
2.1.2 Links.

2.1.3 Rate control mechanisms

2.2 Probing the information

2.2.1 Starting event monitoring

2.2.2 Trace file format
2.3 Controlling simulation

Exercise

11
11
14
16
17
18
18
19

21

Chapter 1

Introduction

This is exercise for the Helsinki Summer School course Quality of Service in
Internet. This exercise makes you familiar with:

1. ns2. A network simulator which is one of the most used simulation tools
in academic world.

2. Rate control mechanisms which could be used to mark, limit or shape
the Internet traffic

Tool is installed into SUN workstations in Helsinki University of
Technology department of Electrical and Communications FEngi-
neering workstation room B215. You can run it there or down-
load it to your own computer from the world wide distribution
site http://www.isi.edu/nsnam/ns/index.html. In HUT program can
be located from the path /p/gen/courses/S38/538.180/FEzercise2/.
To be able to wuse it, you must first run command
/p/gen/courses/S38/538.180/Exercise2/usens2.sh or usens2.csh depending
on shell you use.

To start, make working directory into your home directory and copy files
from the directory /p/gen/courses/S38/538.180/FExercise2/doc/HT2.tar to
it. These files are the to core which you must make modifications during the
exercise.

Department has set quotas to workstations, so you have to run your simula-
tions in /tmp directory of workstations. Make temporary working directory
under /tmp. Copy processed results to your working directory and delete
temporary working directory.

CHAPTER 1. INTRODUCTION

1.1 Network Simulator 2

Tool used in this exercise is network simulator 2. It is freely availabale and
distributable object oriented simulator. In glance, it contains kernel code
developed in C++. This kernel code contains class hierarchies for ready
made building blocks. These building blocks are translated to Otcl to make
construction of 'quick and dirty’ simulations easier.

If you have any problems with ns2, I recommend you to read the tutorial
page in http://www.isi.edu/nsnam /ns/tutorial /index.html.

Chapter 2

Simulator code

This chapter present simulator code which is used in this exercise. Following
listing shows whole code as one unit. To become familiar the structure of ns,
we dissect code into peaces and explain what they do in detail.

set ns [new Simulatorl]
set testTime 25

set ratell 50000
set cirll 50000
set cbsli 2000

set rate21 50000
set cir21 50000
set cbs21 2000

set rate31 50000
set cir31 50000
set cbs31 2000

set rate4l 50000
set cir41l 50000
set cbs4il 2000

set rateb51 50000

set cirb51 50000
set cbsbl 2000

set cirl2 350000
set cbsl2 20000

set cir22 350000
set cbs22 20000

set cir32 350000

CHAPTER 2. SIMULATOR CODE

set cbs32 20000

set cird42 350000
set cbs42 20000

set cirb52 350000
set cbsb2 20000

set TCP_Packet_Size 1000
set UDP_Packet_Size 160

Open a file for writing the trace data
set trace_all [open out.all w]

Trace all events for post processing with animator (nam) or with any
other software
$ns trace-all $trace_all

Set up the network topology shown at the top of this file:

set s11 [$ns node
set 812 [$ns node
set s21 [$ns node
set 822 [$ns node
set 831 [$ns node
set 832 [$ns node
set s41 [$ns node
set s42 [$ns node
set 851 [$ns node
set 852 [$ns node
set el [$ns node]
set e2 [$ns node]
set e3 [$ns node]
set e4 [$ns node]
set e5 [$ns node]
set c1 [$ns node]
set c2 [$ns node]
set dest [$ns node]

$ns duplex-link $s11 $el 10Mb 5ms DropTail
$ns duplex-link $s12 $el 10Mb 5ms DropTail
$ns duplex-link $s21 $e2 10Mb 5ms DropTail
$ns duplex-link $s22 $e2 10Mb 5ms DropTail
$ns duplex-link $s31 $e3 10Mb 5ms DropTail
$ns duplex-link $s32 $e3 10Mb 5ms DropTail
$ns duplex-link $s41 $e4 10Mb 5ms DropTail
$ns duplex-link $s42 $e4 10Mb 5ms DropTail
$ns duplex-link $s51 $e5 10Mb 5ms DropTail
$ns duplex-link $s52 $e5 10Mb 5ms DropTail

$ns simplex-link $el $c1 10Mb 5ms dsRED/edge
$ns simplex-link $e2 $c1 10Mb 5ms dsRED/edge
$ns simplex-link $e3 $c1 10Mb 5ms dsRED/edge

$ns simplex-link $e4 $c1 10Mb 5ms dsRED/edge
$ns simplex-link $eb5 $c1 10Mb 5ms dsRED/edge

$ns simplex-link $cl $el 10Mb 5ms dsRED/core
$ns simplex-link $cl $e2 10Mb 5ms dsRED/core
$ns simplex-link $cl $e3 10Mb 5ms dsRED/core
$ns simplex-link $cl $e4 10Mb 5ms dsRED/core
$ns simplex-link $cl $e5 10Mb 5ms dsRED/core

$ns simplex-link $cl $c2 2Mb 50ms dsRED/core
$ns simplex-link $c2 $cl 2Mb 50ms dsRED/core

$ns simplex-link $c2 $dest 10Mb 5ms dsRED/core
$ns simplex-link $dest $c2 10Mb 5ms dsRED/edge

Set DS RED parameters from Edgel to Corel:

set qE1C1 [[$ns link $el $ci1] queue]

$9gE1C1 meanPktSize 1000

$gE1C1 set numQueues_ 1

$qE1C1 setNumPrec 2

$qE1C1 addPolicyEntry [$s1l id] [$dest id] TokenBucket 10 $cirll $cbsil
$qE1C1 addPolicyEntry [$s12 id] [$dest id] TokenBucket 10 $cirl2 $cbsi2
$qE1C1 addPolicerEntry TokenBucket 10 11

$qE1C1 addPHBEntry 10 0 0

$qE1C1 addPHBEntry 11 0 1

$qE1C1 configQ O O 10 40 0.02

$qE1C1 configQ 0 1 0 0 1

Set DS RED parameters from Corel to Edgel:
set qC1E1l [[$ns link $cl $el] queuel

$9C1E1 meanPktSize 1000

$9C1E1 set numQueues_ 1

$9qC1E1 setNumPrec 2

$qC1E1 addPHBEntry 10 0 0

$qC1E1 addPHBEntry 11 0 1

$qC1E1 configQ 0 O 10 40 0.02

$qC1E1 configQ 0 1 0 0 1

Set DS RED parameters from Edge2 to Corel:

set qE2C1 [[$ns link $e2 $c1] queue]

$9gE2C1 meanPktSize 1000

$gE2C1 set numQueues_ 1

$qE2C1 setNumPrec 2

$qE2C1 addPolicyEntry [$s21 id] [$dest id] TokenBucket 10 $cir21 $cbs21
$gE2C1 addPolicyEntry [$s22 id] [$dest id] TokenBucket 10 $cir22 $cbs22
$9gE2C1 addPolicerEntry TokenBucket 10 11

$qE2C1 addPHBEntry 10 0 0

$qE2C1 addPHBEntry 11 0 1

$qE2C1 configQ O O 10 40 0.02

$qE2C1 configQ 0 1 0 0 1

CHAPTER 2. SIMULATOR CODE

Set DS RED parameters from Corel to Edge2:
set qC1E2 [[$ns link $c1 $e2] queuel

$9C1E2 meanPktSize 1000

$9C1E2 set numQueues_ 1

$qC1E2 setNumPrec 2

$qC1E2 addPHBEntry 10 0 0

$qC1E2 addPHBEntry 11 0 1

$qC1E2 configQ O O 10 40 0.02

$qC1E2 configQ 0 1 0 0 1

Set DS RED parameters from Edge3 to Corel:

set qE3C1 [[$ns link $e3 $cl1l] queuel

$gE3C1 meanPktSize 1000

$gE3C1 set numQueues_ 1

$9E3C1 setNumPrec 2

$gE3C1 addPolicyEntry [$s31 id] [$dest id] TokenBucket 10 $cir31l $cbs31
$9gE3C1 addPolicyEntry [$s32 id] [$dest id] TokenBucket 10 $cir32 $cbs32
$gE3C1 addPolicerEntry TokenBucket 10 11

$qE3C1 addPHBEntry 10 0 0

$qE3C1 addPHBEntry 11 0 1

$9gE3C1 configQ O O 10 40 0.02

$9gE3C1 configQ 0 1 0 0 1

Set DS RED parameters from Corel to Edge3:
set qC1E3 [[$ns link $c1 $e3] queuel

$9C1E3 meanPktSize 1000

$qC1E3 set numQueues_ 1

$qC1E3 setNumPrec 2

$qC1E3 addPHBEntry 10 0 O

$qC1E3 addPHBEntry 11 0 1

$9qC1E3 configQ O O 10 40 0.02

$9qC1E3 configQ 0 1 0 0 1

Set DS RED parameters from Edge4 to Corel:

set qE4C1 [[$ns link $e4 $c1] queuel

$gE4C1 meanPktSize 1000

$gE4C1 set numQueues_ 1

$gE4AC1 setNumPrec 2

$qE4C1 addPolicyEntry [$s41 id] [$dest id] TokenBucket 10 $cir4l $cbs4l
$qE4C1 addPolicyEntry [$s42 id] [$dest id] TokenBucket 10 $cir42 $cbs42
$gE4C1 addPolicerEntry TokenBucket 10 11

$qE4C1 addPHBEntry 10 0 0

$qE4C1 addPHBEntry 11 0 1

$gE4C1 configQ O O 10 40 0.02

$qgE4C1 configQ 0 1 0 0 1

Set DS RED parameters from Core4 to Edgel:
set qC1E4 [[$ns link $c1 $e4] queuel

$9C1E4 meanPktSize 1000
$9C1E4 set numQueues_ 1
$qC1E4 setNumPrec 2

$qC1E4 addPHBEntry 10 0 O
$qC1E4 addPHBEntry 11 0 1
$qC1E4 configQ O O 10 40 0.02
$qC1E4 configQ 0 1 0 0 1

Set DS RED parameters from Edgeb to Core:

set gE5C1 [[$ns link $e5 $ci] queue]

$gE5C1 meanPktSize 1000

$gE5C1 set numQueues_ 1

$qESC1 setNumPrec 2

$qESC1 addPolicyEntry [$s51 id] [$dest id] TokenBucket 10 $cir51 $cbsb1
$qESC1 addPolicyEntry [$s52 id] [$dest id] TokenBucket 10 $cirb52 $cbsb2
$qgESC1 addPolicerEntry TokenBucket 10 11

$qE5C1 addPHBEntry 10 0 0

$qE5C1 addPHBEntry 11 0 1

$qESC1 configQ O O 10 40 0.02

$qE5C1 configQ 0 1 0 0 1

Set DS RED parameters from Corel to Edgeb:
set qC1E5 [[$ns link $cl $e5] queue]

$qC1E5 meanPktSize 1000

$qC1E5 set numQueues_ 1

$qC1E5 setNumPrec 2

$qC1E5 addPHBEntry 10 0 O

$qC1E5 addPHBEntry 11 0 1

$qC1E5 configQ O O 10 40 0.02

$qC1E5 configQ 0 1 0 0 1

Set DS RED parameters from Corel to Core2:
set qC1C2 [[$ns link $cl $c2] queuel

$9C1C2 meanPktSize 1000

$9C1C2 set numQueues_ 1

$9C1C2 setNumPrec 2

$qC1C2 addPHBEntry 10 0 0

$qC1C2 addPHBEntry 11 0 1

$9C1C2 configQ 0 O 10 40 0.02

$9C1C2 configQ 0 1 0 0 1

Set DS RED parameters from Core2 to Corel:
set qC2C1 [[$ns link $c2 $c1l] queuel

$9C2C1 meanPktSize 1000

$qC2C1 set numQueues_ 1

$9C2C1 setNumPrec 2

$qC2C1 addPHBEntry 10 0 0

$qC2C1 addPHBEntry 11 0 1

$9C2C1 configQ 0 O 10 40 0.02

CHAPTER 2. SIMULATOR CODE

$9C2C1 configQ 0 1 0 0 1

Set DS RED parameters from Dest to Core2:

set

qDC2 [[$ns link $dest $c2] queue]

$gDC2 meanPktSize 1000

$gDC2 set numQueues_ 1

$gDC2 setNumPrec 2

$gDC2 addPolicyEntry [$dest id] [$si1l id] TokenBucket 10 $cirll $cbsii
$gDC2 addPolicyEntry [$dest id] [$s12 id] TokenBucket 10 $cirl2 $cbsi2
$gDC2 addPolicyEntry [$dest id] [$s21 id] TokenBucket 10 $cir21 $cbs21
$gDC2 addPolicyEntry [$dest id] [$s22 id] TokenBucket 10 $cir22 $cbs22
$gDC2 addPolicyEntry [$dest id] [$s31 id] TokenBucket 10 $cir31l $cbs31
$gDC2 addPolicyEntry [$dest id] [$s32 id] TokenBucket 10 $cir32 $cbs32
$gDC2 addPolicyEntry [$dest id] [$s41 id] TokenBucket 10 $cirdl $cbs4di
$gDC2 addPolicyEntry [$dest id] [$s42 id] TokenBucket 10 $cird2 $cbs42
$gDC2 addPolicyEntry [$dest id] [$s51 id] TokenBucket 10 $cir51 $cbsbi
$gDC2 addPolicyEntry [$dest id] [$s52 id] TokenBucket 10 $cirb2 $cbsb2
$gDC2 addPolicerEntry TokenBucket 10 11

$qDC2 addPHBEntry 10 0 0

$qDC2 addPHBEntry 11 0 1

$gDC2 configQ 0 0 10 40 0.02

$gDC2 configQ 0 1 0 0 1

Set DS RED parameters from Core2 to Dest:

set

qC2D [[$ns link $c2 $dest] queue]

$qC2D meanPktSize 1000

$9C2D set numQueues_ 1

$9C2D setNumPrec 2

$qC2D addPHBEntry 10 0 O
$qC2D addPHBEntry 11 0 1
$qC2D configQ 0 0 10 40 0.02
$9C2D configQ 0 1 0 0 1

Set up one FTP connection between each source and the destination:

set
$ns
set

udpll [new Agent/UDP]
attach-agent $si11 $udpll
cbrll [new Application/Traffic/CBR]

$cbril attach-agent $udpll

$cbr1l set packet_size_ $UDP_Packet_Size
$udpll set packetSize_ $UDP_Packet_Size
$cbril set rate_ $ratell

set
$ns
$ns

set
$ns
set

nullill [new Agent/Null]
attach-agent $dest $nullill
connect $udpll $nullil

udp21 [new Agent/UDP]
attach-agent $s21 $udp21
cbr21 [new Application/Traffic/CBR]

$cbr21 attach-agent $udp21
$cbr21 set packet_size_ $UDP_Packet_Size
$udp21 set packetSize_ $UDP_Packet_Size

$cbr21 set rate_ $rate2l
set null2l [new Agent/Null]

$ns attach-agent $dest $null2l
$ns connect $udp21 $null2l

set udp31 [new Agent/UDP]

$ns attach-agent $s31 $udp31

set cbr31l [new Application/Traffic/CBR]

$cbr31l attach-agent $udp31

$cbr31 set packet_size_ $UDP_Packet_Size
$udp31 set packetSize_ $UDP_Packet_Size

$cbr31 set rate_ $rate3il
set null31l [new Agent/Null]

$ns attach-agent $dest $null3l
$ns connect $udp31l $null3il

set udp4l [new Agent/UDP]

$ns attach-agent $s41 $udpéi

set cbr4l [new Application/Traffic/CBR]

$cbr4l attach-agent $udpéi

$cbrdl set packet_size_ $UDP_Packet_Size
$udp41l set packetSize_ $UDP_Packet_Size

$cbrdl set rate_ $ratedi
set null4l [new Agent/Null]

$ns attach-agent $dest $nullél
$ns connect $udp4l $null4il

set udp51 [new Agent/UDP]

$ns attach-agent $s51 $udp51

set cbr51 [new Application/Traffic/CBR]

$cbrb51 attach-agent $udpb1

$cbrb51 set packet_size_ $UDP_Packet_Size
$udp51 set packetSize_ $UDP_Packet_Size

$cbr51 set rate_ $ratebl
set null51 [new Agent/Nulll

$ns attach-agent $dest $nullbi
$ns connect $udp51 $nullb1

set tcpl2 [new Agent/TCP]

$ns attach-agent $s12 $tcpl2

set ftpl2 [new Application/FTP]

$ftpl2 attach-agent $tcpl2

$tcpl2 set packetSize_ $TCP_Packet_Size
set sink12 [new Agent/TCPSink]

$ns attach-agent $dest $sink12

$ns connect $tcpl2 $sinki?2

set tcp22 [new Agent/TCP]
$ns attach-agent $s22 $tcp22

CHAPTER 2. SIMULATOR CODE

set ftp22 [new Application/FTP]

$ftp22 attach-agent $tcp22

$tcp22 set packetSize_ $TCP_Packet_Size
set sink22 [new Agent/TCPSink]

$ns attach-agent $dest $sink22

$ns connect $tcp22 $sink22

set tcp32 [new Agent/TCP]

$ns attach-agent $s32 $tcp32

set ftp32 [new Application/FTP]

$£tp32 attach-agent $tcp32

$tcp32 set packetSize_ $TCP_Packet_Size
set sink32 [new Agent/TCPSink]

$ns attach-agent $dest $sink32

$ns connect $tcp32 $sink32

set tcp42 [new Agent/TCP]

$ns attach-agent $s42 $tcp4d2

set ftp42 [new Application/FTP]

$ftp42 attach-agent $tcp42

$tcp42 set packetSize_ $TCP_Packet_Size
set sink42 [new Agent/TCPSink]

$ns attach-agent $dest $sink42

$ns connect $tcp42 $sink42

set tcpb2 [new Agent/TCP]

$ns attach-agent $s52 $tcp52

set ftp52 [new Application/FTP]

$ftp52 attach-agent $tcpb52

$tcp52 set packetSize_ $TCP_Packet_Size
set sink52 [new Agent/TCPSink]

$ns attach-agent $dest $sink52

$ns connect $tcp52 $sinkb52

proc finish
global ns trace_all
close $trace_all

#Following are awk scripts to process trace of all events.
exec awk
if (($1 == "r") && ($4 == "17")) print $2, $9, $6

out.all > out.rec

exit O

10

2.1. CREATE TOPOLOGY

$qgE1C1 printPolicyTable
$qE1C1 printPolicerTable
$qE1C1 printPHBTable

$ns at 0.0 "$cbril start"
$ns at 0.0 "$cbr21 start"
$ns at 0.0 "$cbr3l start"
$ns at 0.0 "$cbr4l start"
$ns at 0.0 "$cbrb51 start"
$ns at 0.0 "$ftpl2 start"
$ns at 0.0 "$ftp22 start"
$ns at 0.0 "$ftp32 start"
$ns at 0.0 "$ftp42 start"
$ns at 0.0 "$ftp52 start"

$ns at 10.0 "$qE1C1 printStats"
$ns at 20.0 "$qE1C1 printStats"
$ns at $testTime "$cbril stop"
$ns at $testTime "$cbr21l stop"
$ns at $testTime "$cbr3l stop"
$ns at $testTime "$cbr4l stop"
$ns at $testTime "$cbr51 stop"
$ns at $testTime "$ftpl2 stop"
$ns at $testTime "$ftp22 stop"
$ns at $testTime "$ftp32 stop"
$ns at $testTime "$ftp42 stop"
$ns at $testTime "$ftp52 stop"
$ns at [expr $testTime + 1.0] "finish"

$ns run

2.1 Create topology

Topology in ns is based on collection of nodes and links. Topology is ba-
sic requirement for the succesful simulation of particular scenario. Therefore
topology is so called base requirement and components od topology are de-
fined in base level of ns. This is easily detectable with the declarations which
start by $ns.

2.1.1 Nodes

There is no differentiation between end systems and routers in creation of
topology, i.e. each node can be end system and/or router.

11

CHAPTER 2. SIMULATOR CODE

Figure 2.1: Topology of simulation

Node is created with command set s1 [$ns node]

s1is the name for the node which is later on used as pointer to the node. [$ns
node] tells to the ns that properties of class node should be assigned to new
object named s1. When node is an end system, we must add protocols and
traffic generation models to it. In our exercise we have two types of clients.

1. Traffic sources

Traffic sources use UDP and TCP as their transport protocol. Protocol
for the end system is created with commands

O

set udpl [new Agent/UDP]

$ns attach-agent $s1 $udpl

set cbrl [new Application/Traffic/CBRI]
$cbrl attach-agent $udpl

$cbrl set packet_size_ $packetSize
$udpl set packetSize_ $packetSize

$cbrl set rate_ $ratel
>

O I

set tcpl0 [new Agent/TCP]

$ns attach-agent $s10 $tcpl0

set ftpl0 [new Application/FTP]
$£ftpl0 attach-agent $tcpl0

$t§}<)10 set packetSize_ $packetSize

12

2.1. CREATE TOPOLOGY

Port
Classifier

Only inend system

Node Address
entry Cassifier

Link Hu nk >—<Li nk }

Figure 2.2: Construction of node in ns2

Where udpl and tcpl0 are the names for the protocol stacks. These
names are used for combining right node and source model to these
protocol stacks. [new Agent/UDP] and [new Agent/TCP] are used to
tell for ns to combine properties of class UDP and class TCP to new
objects named udpl and tcpl10. These classes inherit all features of
their parents, i.e. Agent.

Protocol stack is attached to particular node with the command $ns
attach-agent $s1 $udpl. Which combines node $s1 to protocol stack
$udpl and node $s10 to protocol stack $tcpl0 respectively.

Source type, i.e. traffic generation pattern, is set by defining the client.

UDP protocol is attached to application which generates constant bit
rate traffic. This is done first by defining the application set cbril
[new Application/Traffic/CBR] and then attaching the application
to the transport protocol $cbrl attach-agent $udpl. $cbrl inherits
all features of Application, Traffic and CBR. One of the features is that
CBR traffic is defined by rate and packet size. These are defined by
$cbrl set rate_ and $cbrl set packet_size_. They are connected
to locally modifiable variables located at the beginning of tcl script.

TCP protocol is attached to FTP application. Client name is £tp10 and
its operation is defined in class class Application/FTP. FTP without

13

CHAPTER 2. SIMULATOR CODE

any additional parametrisation is a greedy traffic source, i.e. it tries to
fill the pipe full of its traffic.

2. Traffic sinks

Traffic sinks are points where the flow of information are terminated.
There are several different types of sinks for different stacks and proto-
col levels. We are not interested in the operation of TCP and UDP, so
we will terminate information flows without any processing. We create
a TCP sink which is defined by class Agent/TCPSink and name it as
sink10. This sink then attached to the node dest. Sameway we create
UDP sink which is defined by class Agent/Null and attach that to same
destination node dest.

Clients are connected together (after the links are declared) with the com-
mand

O
$ns connect $udpl $nulll

$ns connect $tcpl0 $sink10
__><_

This command connects clients at the level of transmission protocol together,
i.e. state is established on the TCP.

2.1.2 Links

Links are the other part of topology. Because nodes are universal, i.e. end
systems and routers share same construction, additional mechanisms are im-
plemented into the links. Links contain queues which in real world would
have been implemented in routers.

Link
— enD—' Queue » Delay » FEror

Figure 2.3: Construction of link in ns2

v

Links are created with command

14

2.1. CREATE TOPOLOGY

>
$ns duplex-link $s1 $el 10Mb 5ms DropTail

$ns simplex-link $el $e2 2Mb 50ms dsRED/edge
><

First parameter, duplex-1link in command expresses the type of link. This
type may vary depending on what you are doing from simplex, duplex or
some special link, like CBQLink or IntServLink. We use in our exercise duplex
link to carry the data from source to access point and simplex links in core
network.

Second and third parameters refer from where to where link goes. End points
are nodes which are attached to the link, i.e. example shows link going from
s1 to el. Ordering of end points does not account when we are talking about
duplex links. However, simplex links are directed based on the order of end
points.

Fourth parameter is the bandwidth (data rate) of the link. You may use
qualifiers k (kilo) and M (mega) as b (bit) and B (byte).

Fifth parameter is the delay of the link this has same idea as bandwidth you
may use m (milli) and u (mikro) as qualifiers.

Last parameter stands for queue management algorithm used in the queue.
Valid arguments are DropTail (FIFO), RED, dsRED/edge, dsREDcore,
CBQ, FQ, SFQ and DRR. We use DropTail everywhere else but at the core
network to have most straight forward simulation.

For visualisation in nam ns contains possibility to adjust topology on a way
you want. This is done with command

$ns duplex-link-op $s1 $el orient right-down

which makes possible to give orientational directions of links. Orientation is
in direction of from to to. Distance between two nodes comes from the delay.
All distances are scaled based on the shortest distance.

Additional parameters for the link can be given with same command
simplex-link-op. In command

$ns simplex-link-op $el $e2 queuePos 0.5

queue on link between el and e2 is monitored in nam visualisation.

15

CHAPTER 2. SIMULATOR CODE

2.1.3 Rate control mechanisms

Rate control mechanisms are implemented in Differentiated Services packet.
Forwarding is based on the modified RED queue (one physical queue contains
three virtual queues). Different RED parameters are used for different virtual
queues, causing some virtual queue to have lenient operation while other are
more strained.

Base of the DiffServ operation is the policy which is set for the simulation.
Policy declares how particular connection should be metered, marked or po-
liced during the simulation.

> _
$qE2E1 addPolicyEntry [$dest id] [$s1 id] TSW2CM 20 $cirl

$qE2E1 addPolicyEntry [$dest id] [$s10 id] TSW2CM 10 $ciril0
_I><__

These policies define connection which is under the control i.e. from $dest
to $s1 and $a10. Also the type of metering and marking is defined TSW2CM
which stands for Time Sliding Window Metering with Two Color Marking.
Two Color marking means simply in or out of profile marking. After the
type of policer a initial codepoint (20) for the packet is given. This codepoint
is degraded based on the metered result. Depending on the type of policer
there may be several parameters controlling the rate and/or burst size. In
TSW2CM’s case there is only committed information rate (cir).

ns2 has build in support for following metering and marking combinations:

1. TSW2CM: Time Sliding Window Meter with Two Color Marker.
TSW2CM is controlled with single parameter Committed Information
Rate (CIR). CIR is the rate for which ISP offers QoS level commit-
ment. Traffic falling out of profile is probabilistally marked to lower
precedence.

2. TSW3CM: Time Sliding Window Meter with Three Color Marker.
TSW3CM is controlled with two parameters Committed Information
Rate (CIR) and Peak Information Rate (PIR). CIR is the rate for which
ISP offers QoS level commitment. Traffic falling out of CIR is proba-
bilistally marked to medium precedence. Traffic falling out of PIR is
probabilistally marked to lowest precedence.

3. TokenBucket: Token Bucket uses CIR and committed burst size (CBS)
with two drop precedences. Packet is marked to lower precedence if it
falls out of profile defined by CIR and CBS (size of the token bucket).

16

2.2. PROBING THE INFORMATION

4. srTCM: Single Rate Three Color Marker uses combination of two token
buckets in cascade. Traffic is metered by CIR, CBS and excess burst size
(EBS). Excess burst size is addtional burst level defined by second token
bucket. Traffic falling in first bucket is marked to highest precedence.
Traffic falling within second but not first token bucket is marked for
medium drop precedence. Traffic falling out from both of the buckets
is marked to lowest precedence.

5. tr'TCM: Two Rate Three Color Marker uses a combination of two token
bucket in cascade. Traffic is metered by CIR and CBS in first token
bucket, and PIR and peak burst size (PBS) in second token bucket.
Traffic falling in first bucket is marked to highest precedence. Traffic
falling within second but not first token bucket is marked for medium
drop precedence. Traffic falling out from both of the buckets is marked
to lowest precedence.

Ones the policy is defined. Policers which are attached to policy need to be
parametrized. Parameters which they require are degraded marks which are
associated to their conditioning actions.

__><
$qE1E2 addPolicerEntry TSW2CM 10 11
$qE1E2 addPolicerEntry TSW2CM 20 21

After the policy is completely established one must take care about for-
warding of the marked packets. Each codepoint (mark) needs to have as-
sociated forwarding treatment. Forwarding treatments are in Differentiated
Services called per hop behaviors (PHB). In ns2 PHB is determined only
on the level of queue and precendence which some codepoint reflects $qE1E2
addPHBEntry 10 0 0. RED algorithms operating on the queues need also to
be paramtrised through $qE1E2 configQ 0 1 10 40 0.10

2.2 Probing the information

Event monitoring is special class of Tcl operation, where a Trace class object
is wrapped around monitored system.

17

CHAPTER 2. SIMULATOR CODE

2.2.1 Starting event monitoring

Event monitoring means that all events surrounding some object are recorded
into the trace file. For that we need to open the trace file and connect a handle
to that file /0.

> =

set trace_all [open out.all w]
__><_

After the file is opened events can be recorded to that. Simulator contains a
special commands to do that. Commands specify the object which is traced
and the handle to the file where events are recorded. Following command

o> =

$ns trace-all $trace_all
><

records all events from the simulation to the file pointed by handle
$trace_all. After the simulation trace buffer must be cleared and the file
closed

__><_
$ns flush-trace

close $trace_all
__><_

2.2.2 Trace file format

Trace mechanism generates a trace file where events are stored for post pro-
cessing. Trace file contains information in a form of white space separated
table.

o>
r 6.6938 4 5 tcp 1000 ------- 1 0.0 2.0 657 1301
+ 6.6938 5 2 tcp 1000 ------- 1 0.0 2.0 657 1301
- 6.6938 5 2 tcp 1000 ---———-—- 1 0.0 2.0 657 1301
r 6.694155 1 4 tcp 1000 ------- 2 1.0 3.0 10 1356
+ 6.694155 4 5 tcp 1000 ------- 2 1.0 3.0 10 1356
d 6.694155 4 5 tcp 1000 ------- 2 1.0 3.0 10 1356
r 6.6946 0 4 tcp 1000 ------- 1 0.0 2.0 684 1357
>

18

2.3. CONTROLLING SIMULATION

First column of table represents the type of event. Event may be receive (1),
drop ('d’), engue (*+’) or deque (’-").

Second column is the simulated time when the event occured. Time is given
in seconds from the beginning of simulation.

Third and fourth columns are source and destination nodes of event, i.e. they
show where the tracing of event took place and on which direction.

Fifth column expresses the type of packet that was traced. Type may be
protocol or action, depending on agent that generated the packet.

Sixth column indicates the packet size as encoded in IP header.
Seveth column (-------) represent flags which may be coded in packets.

Eigth column is flow id which is used to separate connections in aggregated
links and end points.

Nineth and tenth columns are source and destinations addresses. If special
addressing is used, this shows it. Otherwise it is the node numbers in decimal
format.

Eleventh column is the sequence number field. This field is used for protocols
and agents which make use of sequence numbers.

Twelvth column is the uniqueue id of packet. Each packet has uniqueue
id throughou the simulation. This makes easy to trace events which have
happened to a single packet on a path through the network.

2.3 Controlling simulation

Simulation is started and stopped with commands

_><
$ns run
$ns at [expr $testTime + 1.0] "finish"

Finish command schedules the subroutine finish at the time set by parameter
$testTime. Subroutine finish is used to close trace files, to do post processing
of information (not neccessary) and to plot trace information (not neccesary).
Last command in subroutine is exit which is used to terminate the program.

>

19

CHAPTER 2. SIMULATOR CODE

proc finish {} {
global ns trace_all

$ns flush-trace
close $trace_all

" exit 0
}

> -

Other events which must be scheduled are client start and stop times. These
events control traffic generation within the network.

o>

$ns at 0.0 "$cbril start"
$ns at 0.0 "$cbr21 start"
$ns at 0.0 "$ftpl2 start"

$ns at 0.0 "$ftp22 start"

$ns at $testTime "$cbril stop"
$ns at $testTime "$cbr21l stop"
$ns at $testTime "$ftpl2 stop"
$ns at $testTime "$ftp22 stop"

o> =

20

Chapter 3

Exercise

This exercise is about comparison of different rate control methods in Inter-
net. Methods which are used here are token bucket and time sliding window
two color marker. Investigate the operation of different metering and mark-
ing algorithms in a network which is used for transmission of mixed (5 UDP
clients and 5 TCP clients) traffic.

Calculate how these rate control mechanisms distribute capacity to individual
connections in otherwise same network conditions. See how excess capacity
is distributed to the clients (proportionally to cir / rate / something else).
Use loose and strict policing (i.e. measured excess traffic is admitted to lower
priority or measured excess traffic is discarded). See how same parameters
effect the overall operation of different client types. With TCP-traffic check
the effect of different round-trip times to actual capacity. What causes these
effects. Run overloaded and underloaded cases to see what happens if you
overutilize your infrastructure.

Write report (3-5 pages) explaining your findings of these rate control algo-
rithms. You can explain the operation of these algorithms and compare then
based on their structure. Also explain the sensitivity of these algorithms to
the case when type of client changes behind the access port. Is any of these
mechanisms superior to others and if is on what you base your argument.

21

