Introduction to Multiwavelength Optical Networks

Switching Technology S38.165
http://www.netlab.hut.fi/opetus/s38165

Source: Stern-Bala (1999), Multiwavelength Optical Networks

Contents

• The Big Picture
• Network Resources
• Network Connections
Optical network

• Why?
 – technology push, but no significant demand pull yet
 – evolving bandwidth hungry applications
 – optical transport already in the trunk network
• Why not yet?
 – optical last mile (a.k.a. the first mile) solutions still relatively primitive
 – still too expensive
 – administrative, political, etc. reasons
=> “The information superhighway is still a dirt road; more accurately, it is a set of isolated multilane highways with cow paths for entrance.”
• However, development getting pace

Optical network (cont.)

• An optical network is defined to be a telecommunications network
 – with transmission links that are optical fibers, and
 – with an architecture designed to exploit the unique features of fibers
• The term optical network (as used here)
 – does not necessarily imply a purely optical network,
 – but it does imply something more than a set of fibers terminated by electronic devices
• The “glue” that holds the purely optical network together consists of
 – optical network nodes (ONN) connecting the fibers within the network
 – network access stations (NAS) interfacing user terminals and other non-optical end-systems to the optical network
Optical network (cont.)

ONN (Optical Network Node)
• provides switching and routing functions to control optical signal paths, configuring them to create required connections

NAS (Network Access Station)
• provides termination point for optical paths within the optical network layer

Basic types of optical networks
• transparent (purely optical) networks
 – Static network = broadcast-and-select network
 – Wavelength Routed Network (WRN)
 – Linear Lightwave Network (LLN) = waveband routed network
• hybrid optical network = layered optical network
 – Logically Routed Network (LRN)

Physical picture of the network
A wish list of optical networks

• Connectivity
 – support of a very large number of stations and end systems
 – support of a very large number of concurrent connections including multiple connections per station
 – efficient support of multi-cast connections

• Performance
 – high aggregate network throughput (hundreds of Tbps)
 – high user bit rates (few Gbps)
 – small end-to-end delay
 – low error rate (digital) / high SNR (analog)
 – low processing load in nodes and stations
 – adaptability to changing and unbalanced loads
 – efficient and rapid means of fault identification and recovery

A wish list of optical networks (cont.)

• Structural features
 – scalability
 – modularity
 – survivability (fault tolerance)

• Technology/cost issues
 – access stations: small number of optical transceivers per station and limited complexity of optical transceivers
 – network: limited complexity of the optical network nodes, limited number and length of cables and fibers, and efficient use (and reuse) of optical spectrum
Optics vs. electronics

Optical domain
- photonic technology is well suited to certain simple (linear) signal-routing and switching functions
- static photonic devices offer
 - optical power combining, slitting and filtering
 - wavelength multiplexing, demultiplexing and routing
- channelization needed to make efficient use of the enormous bandwidth of the fiber
 - by wavelength division multiplexing (WDM)
 - many signals operating on different wavelengths share each fiber

=> optics is fast but dumb
=> connectivity bottleneck

Optics vs. electronics (cont.)

Electrical domain
- electronics is needed to perform more complex (nonlinear) functions
 - signal detection, regeneration and buffering
 - logic functions (e.g. reading and writing packet headers)
- however, these complex functions limit the throughput
- electronics also gives a possibility to include in-band control information (e.g. in packet headers)
 - enabling a high degree of virtual connectivity
 - easier to control

=> electronics is slow but smart
=> electronic bottleneck
Optics and electronics

Hybrid approach:
• a multiwavelength purely optical network as a physical foundation
• one or more logical networks (LN) superimposed on the physical layer, each
 – designed to serve some subset of user requirements and
 – implemented as an electronic overlay
• an electronic switching equipment in the logical layer acts as a middleman
 – taking the high-bandwidth transparent channels provided by the physical layer and
 organizing them into an acceptable and cost-effective form

Why hybrid approach?
• purely optical wavelength selective switches offer huge aggregate throughput
 of few connections
• electronic packet switches offer large number of relatively low bit rate virtual
 connections
• hybrid approach exploits the unique capabilities of optical and electronic
 switching while circumventing their limitations

Example LAN interconnection
• Consider a future WAN serving as a backbone that interconnects a large
 number of high-speed LANs (say 10,000), accessing the WAN through
 LAN gateways (with aggregate traffic of tens of Tbps)
• Purely optical approach
 – each NAS connects its LAN to the other LANs through individual optical
 connections ⇒ 9 999 connections per NAS
 – this is far too much for current optical technology
• Purely electronic approach
 – electronics easily supports required connectivity via virtual connections
 – however, the electronic processing bottleneck in the core network does not
 allow such traffic
• Hybrid approach: both objectives achieved, since
 – LN composed of ATM switches provides the necessary connectivity
 – optical backbone at the physical layer supports the required throughput
Network links

A large number of concurrent connections can be supported on each network link through successive levels of **multiplexing**

- **Space division multiplexing** in the fiber layer:
 - a cable consists of several (sometimes more than 100) fibers, which are used as bi-directional pairs

- **Wavelength division multiplexing** (WDM) in the optical layer:
 - a fiber carries connections on many distinct wavelengths (\(\lambda\)-channels)
 - assigned wavelengths must be spaced sufficiently apart to keep neighboring signal spectra from overlapping (to avoid interference)

- **Time division multiplexing** (TDM) in the transmission channel sublayer:
 - a \(\lambda\)-channel is divided (in time) into frames and time-slots
 - each time-slot in a frame corresponds to a transmission channel, which is capable of carrying a logical connection
 - location of a time-slot in a frame identifies a transmission channel
Fiber resources

Optical spectrum

- Since wavelength λ and frequency f are related by $f = \frac{c}{\lambda}$, where c is the velocity of light in the medium, we have the relation
 \[\Delta f \approx -c \frac{\Delta \lambda}{\lambda^2} \]

- Thus, 10 GHz = 0.08 nm and 100 GHz = 0.8 nm in the range of 1,550 nm, where most modern lightwave networks operate

- The 10-GHz channel spacing is sufficient to accommodate λ-channels carrying aggregate digital bit rates on the order of 1 Gbps
 - modulation efficiency of 0.1 bps/Hz typical for optical systems

- The 10-GHz channel spacing is suitable for optical receivers, but much too dense to permit independent **wavelength routing** at the network nodes
 - for this, 100-GHz channel spacing is needed.

- In a **waveband routing** network, several λ-channels (with 10-GHz channel spacing) comprise an independently routed waveband (with 100-GHz spacing between wavebands).
Wavelength partitioning of the optical spectrum

Channel spacing for separability at receivers

\[\lambda_1, \lambda_2, \ldots, \lambda_m \]

Unusable spectrum

10 GHz/0.08 nm

Channel spacing for separability at network nodes

\[\lambda_1, \lambda_2, \ldots, \lambda_m \]

100 GHz/0.8 nm

Wavelength and waveband partitioning of the optical spectrum

10 GHz/0.08 nm

100 GHz/0.8 nm

200 GHz/0.16 nm

P. Raatikainen Switching Technology / 2005
Capacity of wavelength and waveband routed networks

• Connections in optical networks usually require wavelength continuity, i.e., signal generated at a given wavelength must remain on that wavelength from source to destination.

• Due to the current state of technology, imperfections in signal resolution at network nodes result in signal attenuation, distortion and cross-talk, which accumulate along the path

 => channel spacing cannot be as dense in the network nodes as in the end-receivers

 => loss of transport capacity

• Capacity losses can be avoided by switching wavebands (composed of a number of wave lengths) instead of individual wavelengths

 => wavelength routed solutions have lower throughput than waveband routed solutions

Network based on spectrum partitioning

Single waveband

Waveband-routed

Wavelength-routed
Contents

- The Big Picture
- **Network Resources**
 - Network Links: Spectrum Partitioning
 - **Layers and Sublayers**
 - Optical Network Nodes
 - Network Access Stations
 - Electrical domain resources
- Network Connections

Layered view of optical network (1)
Layers and sublayers

- Main consideration in breaking down optical layer into sublayers is to account for
 - multiplexing
 - multiple access (at several layers)
 - switching

- Using multiplexing
 - several logical connections may be combined on a λ-channel originating from a station

- Using multiple access
 - λ-channels originating from several stations may carry multiple logical connections to the same station

- Through switching
 - many distinct optical paths may be created on different fibers in the network, using (and reusing) λ-channels on the same wavelength
Typical connection

Contents

- The Big Picture
- Network Resources
 - Network Links: Spectrum Partitioning
 - Layers and Sublayers
 - Optical Network Nodes
 - Network Access Stations
 - Electrical domain resources
- Network Connections
Optical network nodes (1)

- **Optical Network Node (ONN)** operates in the optical path sublayer connecting N input fibers to N outgoing fibers
- ONNs are in the optical domain

- **Basic building blocks:**
 - wavelength multiplexer (WMUX)
 - wavelength demultiplexer (WDMUX)
 - directional coupler (2x2 switch)
 - static
 - dynamic
 - wavelength converter (WC)

Optical network nodes (2)

- **Static nodes**
 - without wavelength selectivity
 - NxN broadcast star (= star coupler)
 - Nx1 combiner
 - 1xN divider
 - with wavelength selectivity
 - NxN wavelength router (= Latin router)
 - Nx1 wavelength multiplexer (WMUX)
 - 1xN wavelength demultiplexer (WDMUX)
Optical network nodes (3)

- Dynamic nodes
 - without wavelength selectivity (optical crossconnect (OXC))
 - NxN permutation switch
 - RxN generalized switch
 - RxN linear divider-combiner (LDC)
 - with wavelength selectivity
 - NxN wavelength selective crossconnect (WSXC) with M wavelengths
 - NxN wavelength interchanging crossconnect (WIXC) with M wavelengths
 - RxN waveband selective LDC with M wavebands

Wavelength multiplexer and demultiplexer

[Diagram of WDMUX and WMUX with wavelength λ1, λ2, λ3, λ4]
Directional Coupler (1)

- **Directional coupler** (= 2x2 switch) is an optical four-port
 - ports 1 and 2 designated as input ports
 - ports 1’ and 2’ designated as output ports
- Optical power
 - enters a coupler through fibers attached to input ports
 - divided and combined **linearly**
 - leaves via fibers attached to output ports
- Power relations for input signal powers P_1 and P_2 and output powers P_1' and P_2' are given by
 \[P_1' = a_{11}P_1 + a_{12}P_2 \]
 \[P_2' = a_{21}P_1 + a_{22}P_2 \]
- Denote **power transfer matrix** by $A = [a_{ij}]$ and **power matrix** by $P = [P_i]$ => $P' = AP$

Directional Coupler (2)

- Ideally, the power transfer matrix A is of the form
 \[A = \begin{bmatrix} 1-\alpha & \alpha \\ \alpha & 1-\alpha \end{bmatrix}, \quad 0 \leq \alpha \leq 1 \]
- If parameter α is fixed, the device is **static**, e.g. with $\alpha = 1/2$ and signals present at both inputs, the device acts as a 2x2 star coupler
- If α can be varied through some external control, the device is **dynamic** or controllable, e.g. add-drop switch
- If only input port 1 is used (i.e., $P_2 = 0$), the device acts as a 1x2 **divider**
- If only output port 1’ is used (and port 2’ is terminated), the device acts as a 2x1 **combiner**
Add-drop switch

- **Add-drop state**
- **Bar state**

OR - Optical Receiver
OT - Optical Transmitter

Broadcast star

- Static NxN broadcast star with N wavelengths can carry
 - N simultaneous multi-cast optical connections (= full multipoint optical connectivity)
- Power is divided uniformly
- To avoid collisions each input signal must use different wavelength
- Directional coupler realization
 - \((N/2) \log_2 N\) couplers needed

broadcast star realized by directional couplers
Wavelength router

- Static NxN **wavelength router** with N wavelengths can carry
 - wavelengths from the different inputs are routed so that identical wavelengths do not enter the same outputs (Latin square principle)
 - \(N^2\) simultaneous **unicast** optical connections (= full point-to-point optical connectivity)

- Requires
 - N 1xN WDMUX’s
 - N Nx1 WMUX’s

Crossbar switch

- Dynamic RxN **crossbar switch** consists of
 - R input lines
 - N output lines
 - RN crosspoints

- Crosspoints implemented by **controllable** optical couplers
 - RN couplers needed

- A crossbar can be used as
 - a NxN **permutation switch** (then \(R = N\)) or
 - a RXN **generalized switch**
Permutation switch

• Dynamic NxN permutation switch (e.g. crossbar switch)
 – unicast optical connections between input and output ports
 – N! connection states (if nonblocking)
 – each connection state can carry N simultaneous unicast optical connections
 – representation of a connection state by a NxN connection matrix (exactly one connection “1” per each row and column)

Generalized switch

• Dynamic RxN generalized switch (e.g. crossbar switch)
 – any input/output pattern possible (incl. one-to-many and many-to one connections)
 – 2^{NR} connection states
 – each connection state can carry (at most) R simultaneous multicast optical connections
 – a connection state represented by a RxN connection matrix

• Input/output power relation $P' = AP$ with NxR power transfer matrix $A = [a_{ij}]$, where

\[
a_{ij} = \begin{cases}
\frac{1}{NR}, & \text{if switch } (i,j) \text{ is on} \\
0, & \text{otherwise}
\end{cases}
\]
Linear Divider-Combiner (LDC)

- **Linear Divider-Combiner** (LDC) is a generalized switch that
 - controls power-dividing and power-combining ratios
 - less inherent loss than in crossbar
- Power-dividing and power-combining ratios
 - \(\delta_{ij} \) = fraction of power from input port \(j \) directed to output port \(i' \)
 - \(\sigma_{ij} \) = fraction of power from input port \(j \) combined onto output port \(i' \)
- In an ideal case of lossless couplers, we have constraints
 \[
 \sum_i \delta_{ij} = 1 \quad \text{and} \quad \sum_j \sigma_{ij} = 1
 \]
- The resulting power transfer matrix \(A = [a_{ij}] \) is such that
 \[
 a_{ij} = \delta_{ij} \sigma_{ij}
 \]

LDC and generalized switch realizations

- Directional couplers
- \(\delta - \sigma \) linear divider-combiner
- Generalized optical switch

P. Raatikainen
Switching Technology / 2005
L11 - 39

P. Raatikainen
Switching Technology / 2005
L11 - 40
Wavelength selective cross-connect (WSXC)

- Dynamic NxN wavelength selective crossconnect (WSXC) with M wavelengths
 - includes N 1xM WDMUXs, M NxN permutation switches, and N Mx1 WMUXs
 - \((N!)^M\) connection states if the permutation switches are nonblocking
 - each connection state can carry \(NM\) simultaneous unicast optical connections
 - representation of a connection state by M NxN connection matrices

Wavelength interchanging cross-connect (WIXC)

- Dynamic NxN wavelength interchanging crossconnect (WIXC) with M wavelengths
 - includes N 1xM WDMUXs, 1 NM x NM permutation switch, NM WC, and N Mx1 WMUXs
 - \((NM)!\) connection states if the permutation switch is nonblocking
 - each connection state can carry NM simultaneous unicast connections
 - representation of a connection state by a NMxNM connection matrix
Waveband selective LDC

- Dynamic RxN **waveband selective LDC** with M wavebands
 - includes R 1xM WDMUXs, M RxN LDCs, and N Mx1 WMUXs
 - 2^{RNM} connection states (if used as a generalized switch)
 - each connection state can carry (at most) RM simultaneous multi-cast connections
 - representation of a connection state by a M RxN connection matrices

```
1  w_1,\ldots, w_4
2  w_1,\ldots, w_4
3  w_1,\ldots, w_4
4  w_1,\ldots, w_4
```

Contents

- The Big Picture
- **Network Resources**
 - Network Links: Spectrum Partitioning
 - Layers and Sublayers
 - Optical Network Nodes
 - **Network Access Stations**
 - Electrical domain resources
- Network Connections
Network access stations (1)

- **Network Access Station (NAS)** operates in the logical connection, transmission channel and λ-channel sublayers
- NASs are the gateways between the electrical and optical domains

Functions:
- interfaces the external LC ports to the optical transceivers
- implements the functions necessary to move signals between the electrical and optical domains

![Diagram]

Network access stations (2)

- **Transmitting side** components:
 - Transmission Processor (TP) with a number of LC input ports and transmission channel output ports connected to optical transmitters (converts each logical signal to a transmission signal)
 - Optical Transmitters (OT) with a laser modulated by transmission signals and connected to a WMUX (generates optical signals)
 - WMUX multiplexes the optical signals to an outbound access fiber

- **Receiving side** components:
 - WDMUX demultiplexes optical signals from an inbound access fiber and passes them to optical receivers
 - Optical Receivers (OR) convert optical power to electrical transmission signals, which are corrupted versions of the original transmitted signals
 - Reception Processor (RP) converts the corrupted transmission signals to logical signals (e.g. regenerating digital signals)
Elementary network access station

Access fiber pair
Internodal fiber pairs

Non-blocking network access station

Access fiber pairs
Internodal fiber pairs

OR - Optical Receiver
OT - Optical Transmitter
RP - Reception Processor
TP - Transmission Processor

P. Raatikainen Switching Technology / 2005
Wavelength add-drop multiplexer (WADM)

WADM combined with NAS

Contents

- The Big Picture
- **Network Resources**
 - Network Links: Spectrum Partitioning
 - Layers and Sublayers
 - Optical Network Nodes
 - Network Access Stations
 - **Electrical domain resources**
- Network Connections
End System

- **End systems** are in the electrical domain
- In transparent optical networks, they are directly connected to NASs
 - purpose is to create full logical connectivity between end stations
- In hybrid networks, they are connected to LSNs
 - purpose is to create full virtual connectivity between end stations

Logical Switching Node (LSN)

- **Logical switching nodes** (LSN) are needed in hybrid networks, i.e. in **logically routed networks** (LRN)
- LSNs operate in the electrical domain
- Examples of LSNs are
 - SONET digital cross-connect systems (DCS)
 - ATM switches
 - IP routers
Logically routed network

Contents

- The Big Picture
- Network Resources
- **Network Connections**
 - Connectivity
 - Connections in various layers
 - Example: realizing full connectivity between five end systems
Connectivity

• Transmitting side:
 – one-to-one
 • (single) unicast
 – one-to-many
 • multiple unicasts
 • (single) multicast
 • multiple multicasts

• Receiving side:
 – one-to-one
 • (single) unicast
 – many-to-one
 • multiple unicasts
 • multiple multicasts

• Network side:
 – point-to-point
 – multipoint

Connection Graph (CG)

• Representing **point-to-point** connectivity between end systems

```
    1  2
   / \
  4   3
```

transmitting side receiving side

```
    1

  1
/
  2
/
  3
/
  4
```

Connection graph

Bipartite representation
Connection Hypergraph (CH)

- Representing **multipoint** connectivity between end systems

![Connection hypergraph](image1)

Transmitting side | **Hyper-edges** | **Receiving side**

1 | E1 | 1
2 | | 2
3 | E2 | 3
4 | | 4

Contents

- The Big Picture
- Network Resources
- **Network Connections**
 - Connectivity
 - **Connections in various layers**
 - Example: realizing full connectivity between five end systems
Connections in various layers

- **Logical connection** sublayer
 - Logical connection (LC) is a unidirectional connection between external ports on a pair of source and destination network access stations (NAS)

- **Optical connection** sublayer
 - Optical connection (OC) defines a relation between one transmitter and one or more receivers, all operating in the same wavelength

- **Optical path** sublayer
 - Optical path (OP) routes the aggregate power on one waveband on a fiber, which could originate from several transmitters within the waveband

Notation for connections in various layers

- **Logical connection** sublayer
 - \([a, b]\) = point-to-point logical connection from an external port on station \(a\) to one on station \(b\)
 - \([a, \{b, c, \ldots\}]\) = multi-cast logical connection from \(a\) to set \(\{b, c, \ldots\}\)
 - station \(a\) sends the same information to all receiving stations

- **Optical connection** sublayer
 - \((a, b)\) = point-to-point optical connection from station \(a\) to station \(b\)
 - \((a, b)_k\) = point-to-point optical connection from \(a\) to \(b\) using wavelength \(\lambda_k\)
 - \((a, \{b, c, \ldots\})\) = multi-cast optical connection from \(a\) to set \(\{b, c, \ldots\}\)

- **Optical path** sublayer
 - \(\langle a, b \rangle\) = point-to-point optical path from station \(a\) to station \(b\)
 - \(\langle a, b \rangle_k\) = point-to-point optical path from \(a\) to \(b\) using waveband \(w_k\)
 - \(\langle a, \{b, c, \ldots\} \rangle\) = multi-cast optical path from \(a\) to set \(\{b, c, \ldots\}\)
Example of a logical connection between two NASs

Logical connection \([A,B]\)

Transmission channel

Optical connection \((A,B)_{\lambda_1}\)

Optical path \(<A,B>_{\lambda_1}\)

Contents

- The Big Picture
- Network Resources
- Network Connections
 - Connectivity
 - Connections in various layers
 - Example: realizing full connectivity between five end systems
Example: realization of full connectivity between 5 end systems

```
[1]  [5]  [2]  [4]  [3]
```

Solutions

- **Static network** based on star physical topology
 - full connectivity in the logical layer (20 logical connections)
 - 4 optical transceivers per NAS, 5 NASs, 1 ONN (broadcast star)
 - 20 wavelengths for max throughput by WDM/WDMA
- **Wavelength routed network** (WRN) based on bi-directional ring physical topology
 - full connectivity in the logical layer (20 logical connections)
 - 4 optical transceivers per NAS, 5 NASs, 5 ONNs (WSXCs)
 - 4 wavelengths (assuming elementary NASs)
- **Logically routed network** (LRN) based on star physical topology and unidirectional ring logical topology
 - full connectivity in the virtual layer but only partial connectivity in the logical layer (5 logical connections)
 - 1 optical transceiver per NAS, 5 NASs, 1 ONN (WSXC), 5 LSNs
 - 1 wavelength
Solution markings

- End station
- Logical switching node, e.g. ATM switch
- Network access station
- Wavelength switching equipment, e.g. star coupler or wavelength selective cross-connect

Static network realization

- 5x5 broadcast star
- LCG
Wavelength routed network realization

Logically routed network realization