Switch fabrics

- Basic concepts
- Time and space switching
- Two stage switches
- Three stage switches
- Cost criteria
- Multi-stage switches and path search
Switch fabrics (cont.)

- Multi-point switching
- Self-routing networks
- Sorting networks
- Fabric implementation technologies
- Fault tolerance and reliability

Basic concepts

- Accessibility
- Blocking
- Complexity
- Scalability
- Reliability
- Throughput
Accessibility

- A network has **full accessibility (connectivity)** when each inlet can be connected to each outlet (in case there are no other I/O connections in the network)
- A network has a **limited accessibility** when the above given property does not exist
- Interconnection networks applied in today’s switch fabrics usually have full accessibility

Blocking

- Blocking is defined as failure to satisfy a connection requirement and it depends strongly on the combinatorial properties of the switching networks

<table>
<thead>
<tr>
<th>Network class</th>
<th>Network type</th>
<th>Network state</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-blocking</td>
<td>Strict-sense non-blocking</td>
<td>Without blocking states</td>
</tr>
<tr>
<td></td>
<td>Wide-sense non-blocking</td>
<td>With blocking state</td>
</tr>
<tr>
<td></td>
<td>Rearrangeably non-blocking</td>
<td></td>
</tr>
<tr>
<td>Blocking</td>
<td>Others</td>
<td></td>
</tr>
</tbody>
</table>
Blocking (cont.)

- **Non-blocking** - a path between an arbitrary idle inlet and arbitrary idle outlet can always be established independent of network state at set-up time
- **Blocking** - a path between an arbitrary idle inlet and arbitrary idle outlet cannot be established owing to internal congestion due to the already established connections
- **Strict-sense non-blocking** - a path can always be set up between any idle inlet and any idle outlet without disturbing paths already set up
- **Wide-sense non-blocking** - a path can be set up between any idle inlet and any idle outlet without disturbing existing connections, provided that certain rules are followed. These rules prevent network from entering a state for which new connections cannot be made
- **Rearrangeably non-blocking** - when establishing a path between an idle inlet and an idle outlet, paths of existing connections may have to be changed (rearranged) to set up that connection

Complexity

- Complexity of an interconnection network is expressed by **cost index**
- Traditional definition of cost index gives the number of cross-points in a network
 - used to be a reasonable measure of space division switching systems
- Nowadays cost index alone does not characterize cost of an interconnection network for broadband applications
 - VLSIs and their integration degree has changed the way how cost of a switch fabric is formed (number of ICs, power consumption)
 - management and control of a switching system has a significant contribution to cost
Scalability

- Due to constant increase of transport links and data rates on links, scalability of a switching system has become a key parameter in choosing a switch fabric architecture.
- Scalability describes ability of a system to evolve with increasing requirements.
- Issues that are usually matter of scalability:
 - number of switching nodes
 - number of interconnection links between nodes
 - bandwidth of interconnection links and inlets/outlets
 - throughput of switch fabric
 - buffering requirements
 - number of inlets/outlets supported by switch fabric

Reliability

- Reliability and fault tolerance are system measures that have an impact on all functions of a switching system.
- Reliability defines probability that a system does not fail within a given time interval provided that it functions correctly at the start of the interval.
- Availability defines probability that a system will function at a given time instant.
- Fault tolerance is the capability of a system to continue its intended function in spite of having a fault(s).
- Reliability measures:
 - MTTF (Mean Time To Failure)
 - MTTR (Mean Time To Repair)
 - MTB (Mean Time Between Failures)
Throughput

- Throughput gives forwarding/switching speed/efficiency of a switch fabric
- It is measured in bits/s, octets/s, cells/s, packet/s, etc.
- Quite often throughput is given in the range \((0 \ldots 1.0]\), i.e., the obtained forwarding speed is normalized to the theoretical maximum throughput

Switch fabrics

- Basic concepts
- **Time and space switching**
 - Two stage switches
 - Three stage switches
 - Cost criteria
 - Multi-stage switches and path search
Switching mechanisms

- A switched connection requires a mechanism that attaches the right information streams to each other
- Switching takes place in the switching fabric, the structure of which depends on network’s mode of operation, available technology and required capacity
- Communicating terminals may use different physical links and different time-slots, so there is an obvious need to switch both in time and in space domain
- **Time and space** switching are basic functions of a switch fabric

Space division switching

- A space switch directs traffic from input links to output links
- An input may set up one connection (1, 3, 6 and 7), multiple connections (4) or no connection (2, 5 and 8)
Crossbar switch matrix

- Crossbar matrix introduces the basic structure of a space switch
- Information flows are controlled (switched) by opening and closing cross-points
- \(m \) inputs and \(n \) outputs \(\Rightarrow \) \(mn \) cross-points (connection points)
- Only one input can be connected to an output at a time, but an input can be connected to multiple outputs (multi-cast) at a time

An example space switch

- \(m \times 1 \) -multiplexer used to implement a space switch
- Every input is fed to every output mux and mux control signals are used to select which input signal is connected through each mux
Time division multiplexing

- Time-slot interchanger is a device, which buffers \(m \) incoming time-slots, e.g. 30 time-slots of an E1 frame, arranges new transmit order and transmits \(n \) time-slots.
- Time-slots are stored in buffer memory usually in the order they arrive or in the order they leave the switch - additional control logic is needed to decide respective output order or the memory slot where an input slot is stored.

Time-slot interchange

- \(m \) INPUT LINKS
- \(n \) OUTPUT LINKS
- \(m \) INPUT/OUTPUT SLOTS
- BUFFER FOR \(m \) INPUT/OUTPUT SLOTS
- DESTINATION OUTPUT #
Time switch implementation example 1

- Incoming time-slots are written cyclically into switch memory
- Output logic reads cyclically control memory, which contains a pointer for each output time-slot
- Pointer indicates which input time-slot to insert into each output time-slot

Time switch implementation example 2

- Incoming time-slots are written into switch memory by using write-addresses read from control memory
- A write address points to an output slot to which the input slot is addressed
- Output time-slots are read cyclically from switch memory
Properties of time switches

- Input and output frame buffers are read and written at wire-speed, i.e. \(m \) R/Ws for input and \(n \) R/Ws for output
- Interchange buffer (switch memory) serves all inputs and outputs and thus it is read and written at the aggregate speed of all inputs and outputs
 \(\Rightarrow \) speed of an interchange buffer is a critical parameter in time switches and limits performance of a switch
- Utilizing parallel to serial conversion memory speed requirement can be cut
- Speed requirement of control memory is half of that of switch memory (in fact a little more than that to allow new control data to be updated)

Time-Space analogy

- A time switch can be logically converted into a space switch by setting time-slot buffers into vertical position \(\Rightarrow \) time-slots can be considered to correspond to input/output links of a space switch
- But is this logical conversion fair ?
Space-Space analogy

- A space switch carrying time multiplexed input and output signals can be logically converted into a pure space switch (without cyclic control) by distributing each time-slot into its own space switch.

Inputs and outputs are time multiplexed signals (K time-slots)

To switch a time-slot, it suffices to control one of the K boxes.

An example conversion

K multiplexed input signals on each link
Properties of space and time switches

Space switches
- number of cross-points (e.g. AND-gates)
 - m input x n output = mn
 - when $m=n \Rightarrow n^2$
- output bit rate determines the speed requirement for the switch components
- both input and output lines deploy "bus" structure
 \Rightarrow fault location difficult

Time switches
- size of switch memory (SM) and control memory (CM) grows linearly as long as memory speed is sufficient, i.e.
 $SM + CM = 2 \times 2 \times$ number of time-slots
- a simple and cost effective structure when memory speed is sufficient
- speed of available memory determines the maximum switching capacity

Switch fabrics
- Basic concepts
- Time and space switching
- **Two stage switches**
- Three stage switches
- Cost criteria
- Multi-stage switches and path search
A switch fabric as a combination of space and time switches

• Two stage switches
 • Time-Time (TT) switch
 • Time-Space (TS) switch
 • Space-Time (SP) switch
 • Space-Space (SS) switch

• TT-switch gives no advantage compared to a single stage T-switch
• SS-switch increases blocking probability

A switch fabric as a combination of space and time switches (cont.)

• ST-switch gives high blocking probability (S-switch can develop blocking on an arbitrary bus, e.g. slots from two different buses attempting to flow to a common output)
• TS-switch has low blocking probability, because T-switch allows rearrangement of time-slots so that S-switching can be done blocking free
Time multiplexed space (TMS) switch

- Space divided inputs and each of them carry a frame of three time-slots
- Input frames on each link are synchronized to the crossbar
- A switching plane for each time-slot to direct incoming slots to destined output links of the corresponding time-slot

Connection conflicts in a TMS switch

- Space divided inputs and each of them carry a frame of three time-slots
- Input frames on each link are synchronized to the crossbar
- A switching plane for each time-slot to direct incoming slots to destined output links of the corresponding time-slot
TS switch interconnecting TDM links

- Time division switching applied prior to space switching
- Incoming time-slots can always be rearranged such that output requests become conflict free for each slot of a frame, provided that the number of requests for each output is no more than the number of slots in a frame

SS equivalent of a TS-switch
Connections through SS-switch

Coordinate \((X, Y, Z)\)

Example connections:
- \((1, 3, 1) \Rightarrow (2, 1, 2)\)
- \((1, 4, 2) \Rightarrow (2, 3, 4)\)

Switch fabrics

- Basic concepts
- Time and space switching
- Two stage switches
- **Three stage switches**
- Cost criteria
- Multi-stage switches and path search
Three stage switches

- Basic TS-switch sufficient for switching time-slots onto addressed outputs, but slots can appear in any order in the output frame
- If a specific input slot is to carry data of a specific output slot then a time-slot interchanger is needed at each output
 => any time-slot on any input can be connected to any time-slot on any output
 => blocking probability minimized
- Such a 3-stage configuration is named TST-switching
 (equivalent to 3-stage SSS-switching)

TST-switch:

SSS presentation of TST-switch
Three stage switch combinations

- Possible three stage switch combinations:
 - Time-Time-Time (TTT) (not significant, no connection from PCM to PCM)
 - Time-Time-Space (TTS) (=TS)
 - Time-Space-Time (TST)
 - Time-Space-Space (TSS)
 - Space-Time-Time (STT) (=ST)
 - Space-Time-Space (STS)
 - Space-Space-Time (SST) (=ST)
 - Space-Space-Space (SSS) (not significant, high probability of blocking)

- Three interesting combinations TST, TSS and STS

Time-Space-Space switch

- Time-Space-Space switch can be applied to increase switching capacity
Space-Time-Space switch

- Space-Time-Space switch has a high blocking probability (like ST-switch) - not a desired feature in public networks

Graph presentation of space switch

- A space division switch can be presented by a graph $G = (V, E)$
 - V is the set of switching nodes
 - E is the set of edges in the graph
- An edge $e \in E$ is an ordered pair $(u, v) \in V$
 - more than one edge can exist between u and v
 - edges can be considered to be bi-directional
- V includes two special sets (T and R) of nodes not considered part of switching network
 - T is a set of transmitting nodes having only outgoing edges (input nodes to switch)
 - R is a set of receiving node having only incoming edges (output nodes from switch)
Graph presentation of space switch (cont.)

- A connection requirement is specified for each \(t \in T \) by subset \(R_t \in R \) to which \(t \) must be connected
 - subsets \(R_t \) are disjoint for different \(t \)
 - in case of multi-cast \(R_t \) contains more than one element for each \(t \)
- A path is a sequence of edges \((t,a), (a,b), (b,c), \ldots, (f,g), (g,r) \in E, t \in T, r \in R \) and \(a,b,c,\ldots,f,g \) are distinct elements of \(V - (T+R) \)
- Paths originating from different \(t \) may not use the same edge
- Paths originating from the same \(t \) may use the same edges

Graph presentation example

\[V = \{ t_1, t_2, \ldots, t_{15}, s_1, s_2, \ldots, s_{15}, u_1, u_2, u_3, v_1, v_2, \ldots, v_5, r_1, r_2, \ldots, r_{15} \} \]
\[E = \{ (t_1, s_1), \ldots, (t_{15}, s_{15}), (s_1, u_1), (s_1, u_2), \ldots, (s_{15}, u_{15}), (u_1, v_1), (u_2, v_2), \ldots, (u_{15}, v_{15}), (v_1, r_1), (v_2, r_2), \ldots, (v_{15}, r_{15}) \} \]
SSS-switch and its graph presentation

Graph presentation of connections