Switch Fabrics

Switching Technology $\mathbf{S 3 8 . 1 6 5}$
http://www.netlab.hut.fi/opetus/s38165

Switch fabrics

- Multipoint switching
- Self-routing networks
- Sorting networks
- Fabric implementation technologies
- Fault tolerance and reliability

Fabric implementation technologies

- Time division fabrics
- Shared media
- Shared memory
- Space division fabrics
- Crossbar
- Multi-stage constructions
- Buffering techniques

Buffering alternatives

- Input buffering
- Output buffering
- Central buffering
- Combinations
- input-output buffering
- central-output buffering

Input buffering

Buffer memories at the input interfaces

Input buffering (cont.)

- Pros
- required memory access speed
- in FIFO and dual-port RAM solutions equal to incoming line rate
- in one-port RAM solutions twice the incoming line rate
- Speed of switch fabric
- multi-stages and crossbars operate at input wire speed
- shared media fabrics operate at the aggregate speed of inputs
- Iow cost solution (due to low memory speed)
- Cons
- FIFO type of buffering => HOL problem
- buffer size may be large (due to HOL)
- HOL avoided by having a buffer for each output at each input

Output buffering

Buffer memories at the output interfaces

Output buffering (cont.)

- Pros
- better throughput/delay performance than in input buffered systems
- no HOL problem
- Cons
- access speed of buffer memory
- in FIFO and dual-port RAM solutions N times the incoming line rate - in one-port RAM solutions $N+1$ times the incoming line rate
- high cost due to high memory speed requirement
- switch fabric operates at the aggregate speed of inputs ($N \times$ wire speed)

Central buffering

Buffer memory located between two switch fabrics

- shared by all inputs/outputs
- virtual buffer for each input or output

(C) P. Raatikainen

Central buffering (cont.)

- Pros
- smaller buffer size requirement and lower average delay than in input or output buffering
- HOL problem can be avoided
- Cons
- speed of buffer memory
- in dual-port RAM solutions larger than N times the incoming line rate
- in one-port RAM solutions larger than $2 x N$ times the incoming line rate
- speed of switch fabric $N x$ wire speed
- complicated buffer control
- high cost due to high memory speed requirement and control complexity

Input-output buffering

Input-output buffering common in QoS aware switches/routers

- inputs implement output specific buffers to avoid HOL
- outputs implement dedicated buffers for different traffic classes
- combined buffering distributes buffering complexity between inputs and outputs

Input-central buffering

Input-central buffering used in QoS aware switches/routers

- inputs implement output specific buffers to avoid HOL
- central buffer implements dedicated buffers for different traffic classes for each output

Summary of buffering techniques

Buffering principle	Memory space	Memory speed	Memory control	Queueing delay	Multi-casting capabilities
Input buffering	high	slow $(\sim$ input rate $)$	simple	longest (due to HOL)	extra logic needed
Output buffering	medium	fast $(\sim \mathrm{N}$ x input rate)	simple	medium	supported
Central buffering	low	fast $(\sim \mathrm{N} \times$ input rate) $)$	complicated	shortest	supported but complex

Priorities and buffering

- Separate buffer for each traffic class
- A scheduler needed to control transmission data
- highest priority served first
- longest queue served first
- minimization of lost packets/cells
- Priority given to high quality traffic
- Iow delay and delay variation traffic
- Iow loss rate traffic
- best customer traffic
- Scheduling principles
- round robin
- weighted round robin
- fair queuing
- weighted fair queuing
- etc.

Basic memory types for buffering

- FIFO (First-In-First-Out)
- RAM (Random Access Memory)
- Dual-port RAM

Basic memory types for buffering (cont.)

Switch fabrics

- Multipoint switching
- Self-routing networks
- Sorting networks
- Fabric implementation technologies
- Fault tolerance and reliability

Fault tolerance and reliability

- Definitions
- Fault tolerance of switching systems
- Modeling of tolerance and reliability

Definitions

- Failure, malfunction - is deviation from the intended/specified performance of a system
- Fault - is such a state of a device or a program which can lead to a failure
- Error - is an incorrect response of a program or module. An error is a indication that the module in question may be faulty, the module has received wrong input or it has been misused. An error can lead to a failure if the system is not tolerant to this sort of an error. A fault can exist without any error taking place.

Fault tolerance

- Fault tolerance is the ability of a system to continue its intended performance in spite of a fault or faults
- A switching system is an example of a fault tolerant system
- Fault tolerance always requires redundancy of some sort

Categorization of faults

- Duration based
- permanent or stuck-at (stuck at zero or stuck at one)
- intermittent - fault requires repair actions, but its impact is not always observable
- transient - fault can be observed for a short period of time and disappears without repair
- Observable or latent (hidden)
- Based on the scope of the impact (serious - less serious)

Graceful degradation

- Capability of a system to continue its functions under one or more faults, but on a reduced level of performance
- For example
- in some RAID (Redundant Array Inexpensive Disks) configurations, write speed drops in case of a disk fault, but continues on a lower level of performance even while the fault has not been repaired

Reliability and availability

- Reliability $\boldsymbol{R}(\boldsymbol{t})$ - probability that a system does not fail within time \boldsymbol{t} under the condition that it was functioning correctly at $\boldsymbol{t}=0$
- for all known man-made systems $\boldsymbol{R}(\boldsymbol{t}) \rightarrow \mathbf{0}$ when $\boldsymbol{t} \rightarrow \infty$
- Availability $\boldsymbol{A}(\boldsymbol{t})$ - probability that a system will function correctly at time t
- for a system that can be repaired $\boldsymbol{A}(\boldsymbol{t})$ approaches some value asymptotically during the useful lifetime of the system

Repairable system

- Maintainability $\boldsymbol{M}(\boldsymbol{t})$ - probability that a system is returned to its correct functioning state during time t under the condition that it was faulty at time $\boldsymbol{t}=0$

MTTF, MTTR and MTBF

- MTTF (Mean-Time-To-Failure) - expected value of the time duration from the present to the next failure
- MTTR (Mean-Time-To-Repair) - expected value of the time duration from a fault until the system has been restored into a correct functioning state
- MTBF (Mean-Time-Between-Failures) - expected value of the time duration from occurrence of a fault until the next occurrence of a fault
- MTBF = MTTR + MTTR

High availability of a switching system

- High availability of a switching system is obtained by maintenance software

Main types of redundancy

- Hardware redundancy

- duplication (1+1) - need for "self-checking"-recovery blocks that detect their own faults
- $n+r$-principle (n active units and r standby units)
- Software redundancy
- required always in telecom systems
- Information redundancy
- parity bits, block codes, etc.
- Time redundancy
- delayed re-execution of transactions

Modeling of reliability

- Combinatorial models
- Markov analysis
- Other modeling techniques (not covered here)
- Fault tree analysis
- Reliability block diagrams
- Monte Carlo simulation

Combinatorial reliability

- A serial system \boldsymbol{S} functions if and only if all its parts $\boldsymbol{S}_{i}(1 \leq i \leq n)$ function

$$
\Rightarrow \boldsymbol{R}_{s}=\prod_{i=1}^{n} \boldsymbol{R}_{i} \text { and } \boldsymbol{F}_{s}=\left(1-\boldsymbol{R}_{s}\right)
$$

- Failures in sub-systems are supposed to be independent
- A parallel (replicated) system fails if all its subsystems fail
$\Rightarrow F_{s}=\prod_{i=1}^{n}\left(1-R_{i}\right) \quad$ and $\quad \boldsymbol{R}_{s}=1-F_{s}=1-\prod_{i=1}^{n}\left(1-\boldsymbol{R}_{i}\right)$
- Reliability of a duplicated system $\left(R_{i}=R\right)$ is
 $R_{s}=1-(1-R)^{2}$

Combinatorial reliability example 1

- Calculate reliability $\boldsymbol{R}_{\boldsymbol{s}}$ and failure probability $\boldsymbol{F}_{\boldsymbol{s}}$ of system \boldsymbol{S} given that failures in sub-systems $\boldsymbol{S}_{\boldsymbol{i}}$ are independent and for some time interval it holds that
$R_{1}=0.90, R_{2}=0.95$ and $R_{3}=R_{4}=0.80$
$=>\boldsymbol{R}_{s}=\Pi \boldsymbol{R}_{i}=\boldsymbol{R}_{1} \times \boldsymbol{R}_{2} \times \boldsymbol{R}_{3-4}$
$\Rightarrow \boldsymbol{R}_{3-4}=1-\Pi\left(1-\boldsymbol{R}_{i}\right)=1-\left(1-\boldsymbol{R}_{3}\right)\left(1-\boldsymbol{R}_{4}\right)$
$\Rightarrow \boldsymbol{R}_{s}=\boldsymbol{R}_{1} \times \boldsymbol{R}_{2} \times\left[1-\left(1-\boldsymbol{R}_{3}\right)\left(1-\boldsymbol{R}_{4}\right)\right]$

$=>F_{s}=1-\boldsymbol{R}_{s}=1-\boldsymbol{R}_{1} \times \boldsymbol{R}_{2} \times\left[1-\left(1-\boldsymbol{R}_{3}\right)\left(1-\boldsymbol{R}_{4}\right)\right]$
$\Rightarrow \boldsymbol{R}_{s}=0.82$ and $\boldsymbol{F}_{s}=0.18$

Combinatorial reliability (cont.)

- A load sharing system functions if m of the total of n sub-systems function
- If failures in sub-systems $\boldsymbol{S}_{\boldsymbol{i}}$ are independent then probability that the system fails is
\mathbf{P} (fails) $=\mathbf{P}(k<m)$
and probability that it functions is
$P($ functioning $)=P(k \geq m)=1-P(k<m)$
where k is the number of functioning sub-systems
$\mathrm{P}(k \geq m)=\sum_{i=m}^{n} \mathrm{P}(k=i)$ and $\mathrm{P}(k<m)=\sum_{i=0}^{m-1} \mathrm{P}(k=i)$

Combinatorial reliability example 2

- As an example, suppose we have a system having $m=2$ and $n=4$ and each of the four sub-systems have a different R, i.e. $\boldsymbol{R}_{1}, \boldsymbol{R}_{\mathbf{2}}, \boldsymbol{R}_{\mathbf{3}}$ and \boldsymbol{R}_{4}, and failures in sub-systems $\boldsymbol{S}_{\boldsymbol{i}}$ are independent
- Probability that the system fails is
\mathbf{P} (fails) $=\mathbf{P}(k<2)=\sum_{i=0}^{1} \mathbf{P}(k=i)=\mathbf{P}(k=0)+\mathbf{P}(k=1)$
- $P(k=0)$ and $P(k=1)$ can be derived to be
$\mathrm{P}(\mathrm{k}=0)=\left(1-R_{1}\right)\left(1-R_{2}\right)\left(1-R_{3}\right)\left(1-R_{4}\right)$
$\mathrm{P}(k=1)=R_{1}\left(1-R_{2}\right)\left(1-R_{3}\right)\left(1-R_{4}\right)+\left(1-R_{1}\right) R_{2}\left(1-R_{3}\right)\left(1-R_{4}\right)+$
(1- $\left.R_{1}\right)\left(1-R_{2}\right) R_{3}\left(1-R_{4}\right)+\left(1-R_{1}\right)\left(1-R_{2}\right)\left(1-R_{3}\right) R_{4}$

- If $\boldsymbol{R}_{\mathbf{1}}=0.9, \boldsymbol{R}_{\mathbf{2}},=0.95, \boldsymbol{R}_{\mathbf{3}}=0.85$ and $\boldsymbol{R}_{\mathbf{4}}=0.8$ then
$\boldsymbol{R}_{\boldsymbol{s}}=0.994$ and $\boldsymbol{F}_{\boldsymbol{s}}=0.0058$

Combinatorial reliability (cont.)

- If failures in sub-systems $\boldsymbol{S}_{\boldsymbol{i}}$ of an m / n system are independent and $\boldsymbol{R}_{i}=\boldsymbol{R}$ for all $i \in[1, \mathrm{n}]$ then the system is a Bernoulli system and binomial distribution applies
$=>R_{s}=\sum_{k=m}^{n}\binom{n}{k} R^{k}(1-R)^{n-k}$
- For a system of $m / n=2 / 3$

$$
\Rightarrow R_{2 / 3}=\sum_{k=2}^{3} \frac{3!}{k!(3-k)!} R^{k}(1-R)^{3-k}=3 R^{2}-2 R^{3}
$$

If for example $\boldsymbol{R}=0.9 \Rightarrow \boldsymbol{R}_{2 / 3}=0.972$

Computing MTTF

- MTTF $=\int_{0}^{\infty} \mathbf{R}(\mathbf{t}) \mathrm{dt}-$ valid for any reliability distribution
- Single component with a constant failure rate (CFR) λ
- $R(t)=e^{-\lambda t}$
- MTTF $=1 / \lambda$
- Serial systems with n CFR components
$-\mathbf{R}_{\mathbf{s}}(\mathbf{t})=\mathbf{R}_{1}(\mathbf{t}) \times \mathbf{R}_{\mathbf{2}}(\mathbf{t}) \times \ldots \times \mathbf{R}_{\mathrm{n}}(\mathbf{t})=\mathbf{e}^{-\left(\lambda_{1}+\lambda_{2}+\ldots+\lambda_{\mathrm{n}}\right) \mathrm{t}}=\mathbf{e}^{-\lambda_{\mathbf{s}} \mathbf{t}}$
- $\lambda_{s}=\lambda_{1}+\lambda_{2}+\ldots+\lambda_{n}$
- MTTF $_{s}=1 / \lambda_{s}$
- $1 /$ MTTF $_{s}=1 /$ MTTF $_{1}+1 /$ MTTF $_{2}+\ldots+1 /$ MTTF $_{n}$

Telecom exchange reliability from subscriber's point of view

Premature release requirement $\mathbf{P} \leq \mathbf{2 \times 1 0 ^ { - 5 }}$ applied

Failure intensity

- Unit of failure intensity λ is defined to be $[\lambda]=$ fit $=$ number of faults $/ 10^{9} \mathrm{~h}$
- Failure intensities for replaceable plug-in-units varies in the range 0.1-10 kfit
- Example:
- if failure intensity of a line-card in an exchange is 2 kfit, what is its MTTF ?

$$
\text { MTTF }=\mathbf{1} / \lambda=\frac{10^{9} \mathbf{h}}{2000}=\frac{1000000 \mathrm{~h}}{2 \times 24 \times 360}=58 \text { years }
$$

Reliability modeling using Markov chains

Markov chains

- A system is modeled as a set of states of transitions
- Each state corresponds to fulfillment of a set of conditions and each transition corresponds to an event in a system that changes from one state to another

- By using this method it is possible to find reliability behavior of a complex system having a number of states and non-independent failure modes

Markov chain modeling

- A set of states of transitions leads to a group of linear differential equations
- For a given modeling goal it is essential to choose a minimal set of states for equations to be easily solved
- By setting the derivatives of the probabilities to zero an asymptotic state is obtained if such exists
$\lambda=$ failure intensity

μ = repar intensity (repar time is exponentaly distibut
$\mu=$ repair intensity (repair time is exponentially distributed)
$P_{i}=$ probability of state i, e.g. $P_{0}=R(t)$ and $P_{1}=F(t)$,

Markov chain modeling (cont.)

- Probabilities $\left(\pi_{i}\right)$ of the states and transition rates $\left(\lambda_{i j}\right)$ between the states are tied together with the following formula

$$
\pi \Lambda=\mathbf{0}
$$

where

$$
\pi=\left[\begin{array}{llll}
\pi_{1} & \pi_{2} & \ldots & \pi_{n}
\end{array}\right]
$$

$$
\Lambda=\left[\begin{array}{cccc}
-\left(\lambda_{12}+\lambda_{13}+\cdots\right) & \lambda_{12} & \lambda_{13} & \cdots \\
\lambda_{21} & -\left(\lambda_{21}+\lambda_{23}+\cdots\right) & \lambda_{23} & \cdots \\
\lambda_{31} & \lambda_{32} & -\left(\lambda_{31}+\lambda_{32}+\cdots\right) & \cdots \\
\vdots & \vdots & \vdots & \vdots
\end{array}\right]
$$

Markov chain modeling (cont.)

Example

$$
\begin{aligned}
& \Lambda=\left[\begin{array}{ccc}
-\left(\lambda_{12}+\lambda_{13}\right) & \lambda_{12} & \lambda_{13} \\
\lambda_{21} & -\left(\lambda_{21}+\lambda_{23}\right) & \lambda_{23} \\
\lambda_{31} & \lambda_{32} & -\left(\lambda_{31}+\lambda_{32}\right)
\end{array}\right] \\
& \pi \Lambda=0 \quad \text { and } \pi=\left[\begin{array}{llll}
\pi_{1} & \pi_{2} & \ldots & \pi_{n}
\end{array}\right] \\
& \left\{\begin{array}{cc}
-\left(\lambda_{12}+\lambda_{13}\right) \pi_{1}+\lambda_{12} \pi_{2}+\lambda_{13} \pi_{3}=0 \\
\lambda_{21} \pi_{1}-\left(\lambda_{21}+\lambda_{23}\right) \pi_{2}+\lambda_{23} \pi_{3}=0 \\
\lambda_{31} \pi_{1}+\lambda_{32} \pi_{2}-\left(\lambda_{31}+\lambda_{32}\right) \pi_{3}=0
\end{array}\right.
\end{aligned}
$$

Birth-death process

Birth-death process is a special case of continuous-time Markov chain, which models the size of population that increases by 1 (birth) or decreases by one (death).

- State $S_{0} \quad \lambda_{0} \pi_{0}=\lambda_{1} \pi_{1}$ $\Rightarrow \quad \pi_{1}=\frac{\lambda_{0}}{\mu_{1}} \pi_{0}$
- State $S_{1} \quad\left(\lambda_{1}+\mu_{1}\right) \pi_{1}=\lambda_{0} \pi_{0}+\lambda_{2} \pi_{2}$ $\Rightarrow \quad \pi_{2}=\frac{\lambda_{1} \lambda_{0}}{\mu_{2} \mu_{1}} \pi_{0}$
- State $S_{k}\left(\lambda_{k-1}+\mu_{k-1}\right) \pi_{k-1}=\lambda_{k-2} \pi_{k-2}+\lambda_{k} \pi_{k} \Rightarrow \pi_{k}=\frac{\lambda_{k-1} \cdots \lambda_{1} \lambda_{0}}{\mu_{k} \cdots \mu_{2} \mu_{1}} \pi_{0}$

Birth-death process (cont.)

$\pi_{k}=\left(\frac{\lambda_{k-1}}{\mu_{k}}\right) \cdots\left(\frac{\lambda_{1}}{\mu_{2}}\right)\left(\frac{\lambda_{0}}{\mu_{1}}\right) \pi_{0}=\rho_{k-1} \cdots \rho_{1} \rho_{1} \pi_{0} \quad$ where $\quad \rho_{k}=\frac{\lambda_{k}}{\mu_{k+1}} \quad(k=1,2,3, \ldots)$
Substituting these expressions for π_{k} into $\sum_{k=0}^{\infty} \pi_{k}=1 \quad$ yields
$\pi_{0}+\sum_{k=1}^{\infty} \frac{\lambda_{k-1} \cdots \lambda_{1} \lambda_{0}}{\mu_{k} \cdots \mu_{2} \mu_{1}} \pi_{0}=1 \quad \pi_{0}\left[1+\sum_{k=1}^{\infty} \frac{\lambda_{k-1} \cdots \lambda_{1} \lambda_{0}}{\mu_{k} \cdots \mu_{2} \mu_{1}}\right]=1$
$=>\frac{1}{\pi_{0}}=\left[1+\sum_{k=1}^{\infty} \frac{\lambda_{k-1} \cdots \lambda_{1} \lambda_{0}}{\mu_{k} \cdots \mu_{2} \mu_{1}}\right]$
$=>\pi_{k}=\frac{\lambda_{k-1} \cdots \lambda_{1} \lambda_{0}}{\mu_{k} \cdots \mu_{2} \mu_{1}} \pi_{0} \quad(k=1,2,3, \ldots)$

Example of birth-death process

A switching system has two control computer, one on-line and one standby. The time interval between computer failures is exponentially distributed with mean t_{f}. In case of a failure, the standby computer replaces the failed one.
A single repair facility exist and repair times are exponentially distributed with mean t_{r}.
What fraction of time the system is out of use, i.e., both computers having failed?

The problem can be solved by using a three state birth-death model.

Example of birth-death process (cont.)

S_{0} - both computer operable
S_{1} - one computer failed
S_{2} - both computer failed
$\frac{\mathbf{1}}{\pi_{0}}=\left[\mathbf{1}+\frac{1 / t_{r}}{1 / t_{f}}+\left(\frac{1 / t_{r}}{1 / t_{f}}\right)^{2}\right] \Rightarrow \begin{aligned} & \pi_{0}=\frac{t_{r}^{2}}{\boldsymbol{t}_{r}^{2}+\boldsymbol{t}_{r} \boldsymbol{t}_{f}+\boldsymbol{t}_{f}^{2}} \\ & \text { (probability that both } \\ & \text { computers have failed) }\end{aligned}$

If $t_{r} / t_{f}=10$, i.e. the average repair time is 10% of the average time between failures, then $\pi_{0}=0.009009$ and both computer will be out of service 0.9% of the time.

Additional reading of Markov chain modeling

Switching Technology S38.165
 http://www.netlab.hut.fi/opetus/s38165

Markov chain modeling

A continuous-time Markov Chain is a stochastic process $\{X(t): t \geq 0\}$

- $X(t)$ can have values is $\mathrm{S}=\{0,1,2,3, \ldots\}$
- Each time the process enters a state i, the amount of time it spends in that state before making a transition to another state has an exponential distribution with mean $1 / \lambda_{i}$
- When leaving state i, the process moves to a state j with probability $p_{i j}$ where $p_{i j}=0$
- The next state to be visited after i is independent of the length of time spend in state i
© P. Raatikainen

Markov chain modeling (cont.)

Transition probabilities

$$
p_{i j}(t)=P\{X(t+s)=j \mid X(s)=i\}
$$

Continuous at $t=0$, with

$$
\lim _{t \rightarrow 0} p_{i j}(t)= \begin{cases}1 & \text { if } \quad i=j \\ 0 & \text { if } \quad i \neq j\end{cases}
$$

Transition matrix is a function of time

$$
P(t)=\left[\begin{array}{ccc}
p_{11}(t) & p_{12}(t) & \ldots \\
p_{21}(t) & \vdots & \\
\vdots & & \ddots
\end{array}\right]
$$

Markov chain modeling (cont.)

Transition intensity:

$$
\begin{array}{ll}
\lambda_{j}(t)=-\frac{d}{d t} p_{i j}(0) & \begin{array}{l}
\text { (rate at which the process leaves } \\
\text { state } j \text { when it is in state } J)
\end{array} \\
\lambda_{i j}(t)=\frac{d}{d t} p_{i j}(0)=\lambda_{i} p_{i j} & \begin{array}{l}
\text { (transition rate into state } j \text { when } \\
\text { the process in is state } i)
\end{array}
\end{array}
$$

The process, starting in state i, spends an amount of time in that state having exponential distribution with rate λ_{i}. It then moves to state j with probability

$$
p_{i j}=\frac{\lambda_{i j}}{\lambda_{i}} \quad \forall i, j \quad \sum_{j=1}^{n} p_{i j}=\sum_{j=1}^{n} \frac{\lambda_{i j}}{\lambda_{i}}=\frac{\sum_{j=1}^{n} \lambda_{i j}}{\lambda_{i}}=1 \quad \Rightarrow \quad \lambda_{i}=\sum_{j=1}^{n} \lambda_{i j}
$$

Markov chain modeling (cont.)

Chapman-Kolmogorov equations:

$$
p_{i j}(t+s)=\sum_{k \in S} p_{i k}(t) p_{k j}(s) \quad \forall i, j \in S
$$

Since $p(t)$ is a continuous function

$$
p_{i j}(\Delta t)=p_{i j}(0)+\frac{d}{d t} p_{i j}(0) \Delta t+o\left(\Delta t^{2}\right)
$$

We have defined $\Rightarrow>\quad \lambda_{i j}(t)=\frac{d}{d t} p_{i j}(0)$

For $i \neq j: \quad p_{i j}(\Delta t)=p_{i j}(0)+\lambda_{i j} \Delta t+o\left(\Delta t^{2}\right) \approx \lambda_{i j} \Delta t$
For $i=j: \quad p_{i i}(\Delta t)=p_{i i}(0)+\lambda_{i i} \Delta t+o\left(\Delta t^{2}\right) \approx 1+\lambda_{i i} \Delta t$ (for small Δt)

Markov chain modeling (cont.)

From Chapman-Kolmogorov equations:

$$
\begin{aligned}
& \begin{aligned}
p_{i j}(t+\Delta t) & =\sum_{k} p_{i k}(t) p_{k j}(\Delta t)=p_{i j}(t) p_{i j}(\Delta t)+\sum_{k \neq j} p_{i k}(t) p_{k j}(\Delta t) \\
& =p_{i j}(t)\left[1+\lambda_{i j} \Delta t+o\left(\Delta t^{2}\right)\right]+\sum_{k \neq j} p_{i k}(t)\left[\lambda_{k j} \Delta t+o\left(\Delta t^{2}\right)\right]
\end{aligned} \\
& p_{i j}(t+\Delta t)=p_{i j}(t)+\left[\sum_{k} p_{i k}(t) \lambda_{k j}\right] \Delta t+\left[\sum_{k} p_{i k}(t)\right] o\left(\Delta t^{2}\right) \\
& \frac{p_{i j}(t+\Delta t)-p_{i j}(t)}{\Delta t}=\sum_{k} p_{i k}(t) \lambda_{k j}+\left[\sum_{k} p_{i k}(t)\right] \frac{o\left(\Delta t^{2}\right)}{\Delta t}
\end{aligned}
$$

Taking the limit as $\Delta t \rightarrow 0$

$$
\frac{d}{d t} p_{i j}(t)=\sum_{k} p_{i k}(t) \lambda_{k j} \quad \forall i, j
$$

Markov chain modeling (cont.)

The process is described by the system of differential equations:

$$
\frac{d}{d t} p_{i j}(t)=\sum_{k} p_{i k}(t) \lambda_{k j} \quad \forall i, j
$$

which can be given in the form

$$
\begin{array}{lll}
\frac{d}{d t} P(t)=P(t) \Lambda & \forall i, j & \sum_{j} p_{i j}(t)=1 \quad \forall i, t \\
\frac{d}{d t} \sum_{j} p_{i j}(t)=\frac{d}{d t}(1)=0 & \frac{d}{d t} \sum_{j} p_{i j}(t)=0
\end{array}
$$

$$
\sum_{j} \lambda_{i j}=0 \quad \text { The sum of of each row of } \Lambda \text { is zero ! }
$$

Markov chain modeling (cont.)

Example

$\Lambda=\left[\begin{array}{ccc}-\left(\lambda_{12}+\lambda_{13}\right) & \lambda_{12} & \lambda_{13} \\ \lambda_{21} & -\left(\lambda_{21}+\lambda_{23}\right) & \lambda_{23} \\ \lambda_{31} & \lambda_{32} & -\left(\lambda_{31}+\lambda_{32}\right)\end{array}\right]$
The sum of of each row of Λ must be zero !

Markov chain modeling (cont.)

Steady state probabilities

$\lim _{t \rightarrow \infty} p_{i j}(t)=\pi_{j} \quad$ (Independent of initial state $\left.i\right)$
Must be non-negative and must satisfy $\quad \sum_{i=1}^{n} \pi_{i}=1$
In case of continuous-time Markov chains balance equation used to determine π.
For each state i, the rate at which the system leaves the state must equal to the rate at which the system enters the state
$\Rightarrow \quad \lambda_{i} \pi_{i}=\lambda_{i j} \pi_{j}+\lambda_{k i} \pi_{k}+\lambda_{l i} \pi_{l}$

Markov chain modeling (cont.)

Balance equation

$$
\left(\sum_{j \neq i} \lambda_{i j}\right) \pi_{i}=\sum_{k \neq i} \lambda_{k i} \pi_{k} \quad \forall i
$$

Steady state distribution is computed by solving this system of equations

$$
\begin{aligned}
& \left(\sum_{j \neq i} \lambda_{i j}\right) \pi_{i}=\sum_{k \neq i} \lambda_{k i} \pi_{k} \quad \forall i \\
& \sum_{i=1}^{n} \pi_{i}=1
\end{aligned}
$$

Markov chain modeling (cont.)

An alternative derivation of the steady-state conditions begins with the differential equation describing the process:

$$
\frac{d}{d t} p_{i j}(t)=\sum_{k} p_{i k}(t) \lambda_{k j} \quad \forall i, j
$$

Suppose that we take the limit of each side as $t \rightarrow \infty$
$=>\quad \lim _{t \rightarrow \infty} \frac{d}{d t} p_{i j}(t)=\lim _{t \rightarrow \infty} \sum_{k} p_{i k}(t) \lambda_{k j}$
$\Rightarrow \quad \frac{d}{d t} \lim _{t \rightarrow \infty} p_{i j}(t)=\sum_{k} \lim _{t \rightarrow \infty} p_{i k}(t) \lambda_{k j}$
$\Rightarrow \quad \sum_{k} \pi_{k} \lambda_{k j}=0 \quad$ i.e. $\pi \Lambda=0$

Markov chain modeling (cont.)

Example

$$
\begin{aligned}
& \Lambda=\left[\begin{array}{ccc}
-\left(\lambda_{12}+\lambda_{13}\right) & \lambda_{12} & \lambda_{13} \\
\lambda_{21} & -\left(\lambda_{21}+\lambda_{23}\right) & \lambda_{23} \\
\lambda_{31} & \lambda_{32} & -\left(\lambda_{31}+\lambda_{32}\right)
\end{array}\right] \\
& \pi \Lambda=0 \quad \text { and } \quad \pi=\left[\begin{array}{llll}
\pi_{1} & \pi_{2} & \ldots & \pi_{n}
\end{array}\right] \\
& \begin{cases}-\left(\lambda_{12}+\lambda_{13}\right) \pi_{1}+\lambda_{21} \pi_{2}+\lambda_{31} \pi_{3}=0 \\
\lambda_{12} \pi_{1}-\left(\lambda_{21}+\lambda_{23}\right) \pi_{2}+\lambda_{32} \pi_{3}=0 \\
\lambda_{13} \pi_{1}+\lambda_{23} \pi_{2}-\left(\lambda_{31}+\lambda_{32}\right) \pi_{3}=0\end{cases}
\end{aligned}
$$

