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Switch Fabrics

Switching Technology S38.165
http://www.netlab.hut.fi/opetus/s38165
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Switch fabrics

• Multipoint switching
• Self-routing networks

• Sorting networks

• Fabric implementation technologies
• Fault tolerance and reliability
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Fabric implementation technologies

• Time division fabrics
• Shared media
• Shared memory

• Space division fabrics
• Crossbar
• Multi-stage constructions

• Buffering techniques
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Buffering alternatives

• Input buffering

• Output buffering

• Central buffering

• Combinations

– input-output  buffering

– central-output buffering
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Input buffering

Buffer memories at the input interfaces

INPUT
BUFFERING

SWITCH
FABRIC
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Input buffering (cont.)

• Pros
• required memory access speed

- in FIFO and dual-port RAM solutions equal to incoming line rate
- in one-port RAM solutions twice the incoming line rate

• Speed of switch fabric
- multi-stages and crossbars operate at input wire speed
- shared media fabrics operate at the aggregate speed of inputs

• low cost solution (due to low memory speed)

• Cons
• FIFO type of buffering => HOL problem

• buffer size may be large (due to HOL)

• HOL avoided by having a buffer for each output at each input



4

7 - 7©  P. Raatikainen Switching Technology  / 2003

Output buffering

Buffer memories at the output interfaces

OUTPUT
BUFFERING

SWITCH
FABRIC
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Output buffering (cont.)

• Pros
• better throughput/delay performance than in input buffered

systems

• no HOL problem

• Cons
• access speed of buffer memory

- in FIFO and dual-port RAM solutions N times the incoming line rate
- in one-port RAM solutions N+1 times the incoming line rate

• high cost due to high memory speed requirement

• switch fabric operates at the aggregate speed of inputs
(N x wire speed)
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Central buffering

Buffer memory located between two switch fabrics
- shared by all inputs/outputs
- virtual buffer for each input or output

SWITCH
FABRIC 1

CENTRAL
BUFFERING

SWITCH
FABRIC 2
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Central buffering (cont.)

• Pros
• smaller buffer size requirement and  lower average delay than in

input or output buffering

• HOL problem can be avoided

• Cons
• speed of buffer memory

- in dual-port RAM solutions larger than N times the incoming line rate
- in one-port RAM solutions larger than 2xN times the incoming line rate

• speed of switch fabric N x wire speed

• complicated buffer control

• high cost due to high memory speed requirement and control
complexity
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Input-output buffering

Input-output buffering common in QoS aware switches/routers
- inputs implement output specific buffers to avoid HOL
- outputs implement dedicated buffers for different traffic classes
- combined buffering distributes buffering complexity between inputs and outputs 

INPUT
BUFFERING

OUTPUT
BUFFERING

SWITCH
FABRIC
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Input-central buffering

INPUT
BUFFERING

SWITCH
FABRIC 1

CENTRAL
BUFFERING

SWITCH
FABRIC 2

Input-central buffering used in QoS aware switches/routers
- inputs implement output specific buffers to avoid HOL
- central buffer implements dedicated buffers for different traffic classes for
each output
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Summary of buffering techniques

Buffering
principle

Input
buffering

Output
buffering

Central
buffering

Memory
space

high

medium

low

Memory
speed

slow
(~input rate)

fast
(~N x input rate)

fast
(~N x input rate)

Memory
control

simple

simple

complicated

Queueing
delay

longest 
(due to HOL)

medium

shortest

Multi-casting
capabilities

extra logic
needed

supported

supported
but complex
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Priorities and buffering

• Separate buffer for each traffic class
• A scheduler needed to control transmission data

• highest priority served first
• longest queue served first
• minimization of lost packets/cells

• Priority given to high quality traffic
• low delay and delay variation traffic
• low loss rate traffic
• best customer traffic

• Scheduling principles
• round robin
• weighted round robin
• fair queuing
• weighted fair queuing
• etc.

OUTPUT/CENTRAL
BUFFERING

CLASS 1

CLASS 2

CLASS 3

CLASS 4
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Basic memory types for buffering

• FIFO (First-In-First-Out)
• RAM (Random Access Memory)
• Dual-port RAM
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Basic memory types for buffering (cont.)

Read/Write

RAM

DUAL-PORT RAM

Write Read

FIFO
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Switch fabrics

• Multipoint switching
• Self-routing networks

• Sorting networks
• Fabric implementation technologies
• Fault tolerance and reliabil ity

7 - 18©  P. Raatikainen Switching Technology  / 2003

Fault tolerance and reliabil ity

• Definitions
• Fault tolerance of switching systems
• Modeling of tolerance and reliability
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Definitions

• Failure, malfunction - is deviation from the
intended/specified performance of a system

• Fault - is such a state of a device or a program
which can lead to a failure

• Error - is an incorrect response of a program or
module. An error is a indication that the module in
question may be faulty, the module has received
wrong input or it has been misused. An error can
lead to a failure if the system is not tolerant to this
sort of an error. A fault can exist without any error
taking place.
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Fault tolerance

• Fault tolerance is the ability of a system to continue
its intended performance in spite of a fault or faults

• A switching sys tem is an example of a fault
tolerant system

• Fault tolerance always requires redundancy of some
sort
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Categorization of faults

• Duration based
• permanent or stuck-at (stuck at zero or stuck at one)
• intermittent - fault requires repair actions, but its impact is not

always observable

• transient - fault can be observed for a short period of time and
disappears without repair

• Observable or latent (hidden)
• Based on the scope of the impact (serious - less

serious)
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Graceful degradation

• Capability of a system to continue its functions
under one or more faults, but on a reduced level of
performance

• For example
• in some RAID (Redundant Array Inexpensive Disks)

configurations, write speed drops in case of a disk fault, but
continues on a lower level of performance even while the fault
has not been repaired
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Reliability and availability

• Reliability R(t) - probability that a system does not fail
within time t under the condition that it was functioning
correctly at t = 0

• for all known man-made systems R(t) → → 0  when t → → ∞∞
• Availability A(t) - probability that a system will function

correctly at time t
• for a system that can be repaired A(t) approaches some value

asymptotically during the useful lifetime of the system

7 - 24©  P. Raatikainen Switching Technology  / 2003

Repairable system

• Maintainability M(t) - probability that a system is
returned to its correct functioning state  during time t
under the condition that it was faulty at time t = 0
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MTTF, MTTR and MTBF

• MTTF (Mean-Time-To-Failure) - expected value of the
time duration from the present to the next failure

• MTTR (Mean-Time-To-Repair) - expected value of the
time duration from a fault until the system has been
restored into a correct functioning state

• MTBF (Mean-Time-Between-Failures) - expected value
of the time duration from occurrence of a fault until the
next occurrence of a fault

• MTBF = MTTR + MTTR

7 - 26©  P. Raatikainen Switching Technology  / 2003

High availability of a switching system

• High availability of a switching system is obtained by
maintenance software

Detection of 
errors and 

faults

Supervision 

Fault analysis 
and 

pinpointing

Alarm system

 Recovery 
 - elimination 
   of faults

Recovery

Fault
location

Diagnostics

• In a unit under normal 
working load

• HW implementation
 => fast

• SW implementation
 => detection delay

• Often a rule
based system

Utilizes
• redundancy
• switch-overs

- active <=> standby
• restarts

- a single program
- a preprocessor
- a single main processor
- whole system
- fall back to previous SW package

• In a unit temporarily
without normal
load

Maintenance software is one of the
most important software sub-systems
in a switching system in parallel with
call/connection control and charging
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Main types of redundancy

• Hardware redundancy
• duplication (1+1) - need for “self-checking”-recovery blocks that

detect their own faults
• n+r -principle  (n active units and r standby units)

• Software redundancy
• required always in telecom systems

• Information redundancy
• parity bits, block codes, etc.

• Time redundancy
• delayed re-execution of transactions
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Modeling of reliability

• Combinatorial models
• Markov analysis
• Other modeling techniques (not covered here)

- Fault tree analysis
- Reliability block diagrams
- Monte Carlo simulation
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Combinatorial reliability

S1 S2 Sn

S

S1

S2

Sn

S

• A serial system S functions if and only if all
its parts Si (1≤i≤n) function

=> Rs = ΠΠ Ri  and Fs = (1- Rs)

• Failures in sub-systems are supposed to be
independent

n

i=1

• A parallel (replicated) system fails if all its sub-
systems fail

=> Fs = ΠΠ (1-Ri)   and  Rs = 1- Fs = 1- ΠΠ (1-Ri)

• Reliability of a duplicated system (Ri = R) is
Rs = 1- (1-R)2

 n

 i=1

n

i=1
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Combinatorial reliability example 1

• Calculate reliability Rs and failure probability Fs of system S
given that failures in sub-systems Si are independent and for
some time interval it holds that
R1 = 0.90, R2 = 0.95 and R3 = R4 = 0.80

=> Rs = ΠΠ Ri = R1 x R2 x R3-4

=> R3-4 = 1- ΠΠ (1-Ri) = 1- (1- R3)(1- R4)

=> Rs = R1 x R2 x [1- (1- R3)(1- R4)]

=> Fs = 1- Rs = 1 - R1 x R2 x [1- (1- R3)(1- R4)]

=> Rs = 0.82  and Fs = 0.18

S1 S2

S
S3

S4

S3-4
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Combinatorial reliability (cont.)

S1

S2

Sn

S

m/n

• A load sharing system functions if m of the total of
n sub-systems function

• If failures in sub-systems Si are independent  then
probability that the system fails is

P(fails) = P(k<<m)

and probability that it functions is

P(functioning) = P(k≥≥m) = 1- P(k<<m)

where k is the number of functioning sub-systems

P(k≥≥m) = Σ Σ P(k==i)  and  P(k<<m) = Σ Σ P(k==i)
n

i=m

  m-1

i=0
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Combinatorial reliability example 2

• As an example, suppose we have a system having m=2 and n=4
and each of the four sub-systems have a different R, i.e. R1, R2, R3
and R4, and failures in sub-systems Si are independent

• Probability that the system fails is

P(fails) = P(k<<2) = ΣΣ  P(k==i) = P(k==0) + P(k==1)

• P(k=0) and P(k=1) can be derived to be
P(k==0) = (1- R1)(1- R2)(1- R3)(1- R4)

P(k==1) = R1(1- R2)(1- R3)(1- R4) + (1- R1)R2(1- R3)(1- R4) +

 (1- R1)(1- R2) R3(1- R4) + (1- R1) (1- R2)(1- R3) R4

• If R1=0.9 ,R2,=0.95 ,R3 =0.85 and R4 =0.8 then
 Rs = 0.994 and Fs = 0.0058

1

i=0

S1

S2

S4

S

2/4
S3
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Combinatorial reliability (cont.)

• If failures in sub-systems Si of an m/n system
are independent and Ri = R  for all i∈[1,n]
then the system is a Bernoulli system and
binomial distribution applies

=> Rs = ΣΣ  (  )Rk(1-R)n-k

• For a system of m/n = 2/3

=> R2/3 = ΣΣ −−−− Rk(1-R)3-k = 3R2 - 2R3

If for example R = 0.9 => R2/3 = 0.972

S1

S2

Sn

S

m/n

n
k

3!
k!(3-k)!

3

k=2

n

k=m
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Computing MTTF

• MTTF =  ∫ ∫ R(t)dt - valid for any reliability distribution

• Single component with a constant failure rate (CFR) λλ
-  R(t) = e-λλt

-  MTTF = 1/λλ

• Serial systems with n CFR components

-  Rs(t) = R1(t) x R2(t) x ... x Rn(t) = e- (λλ1 + λλ2 + ... + λλn)t = e- λλst

-  λλs= λλ1 + λλ2 + ... + λλn

• MTTFs = 1/ λλs

• 1/MTTFs = 1/MTTF1 + 1/MTTF2 + ... + 1/MTTFn

   ∞∞

0
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Telecom exchange reliability from
subscriber’s point of view

Line-card

n-1/n

Subscriber
module
control

Centralized
functions

Subscriber
call
control

Exchange
terminal

CCS7 signaling p rocess ors
• (n-1)/n operational processors

for call setup
• chosen processor functions

during a call

Premature release requirement P ≤  2x10-5  applied
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Failure intensity

• Unit of failure intensity λλ is defined to be
[λλ]] = fit = number of faults /109 h

• Failure intensities for replaceable plug-in-units varies in the
range 0.1 - 10 kfit

• Example:
• if failure intensity of a line-card in an exchange is 2 kfit, what

is its MTTF ?

MTTF = 1/λλ =   =   =  58 years
109 h
2000

1 000 000 h
2x24x360
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Reliability modeling using Markov chains

Markov chains
• A system is modeled as a set of states of transitions

• Each state corresponds to fulfillment of a set of conditions and each
transition corresponds to an event in a system that changes from
one state to another

• By using this method it is possible to find reliability behavior of a
complex system having a number of states and non-independent
failure modes

State 1 State 2
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Markov chain modeling

• A set of states of transitions leads to a group of linear differential
equations

• For a given modeling goal it is essential to choose a minimal set of
states for equations to be easily solved

• By setting the derivatives of the probabilities to zero an asymptotic
state is obtained if such exists

λλ = failure intensity
µµ = repair intensity (repair time is exponentially distributed)

Pi = probability of state i, e.g. P0 = R(t) and P1 = F(t),

P0 P1

λλ

µµ
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Markov chain modeling (cont.)

• Probabilities (πi) of the states and transition rates (λij) between the
states are tied together with the following formula

0==ΛΛππ

[[ ]]nππππππππ �
21==

(( ))
(( ))

(( ))


















++++−−
++++−−

++++−−

==ΛΛ
����
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32313231

23232121

13121312

λλλλλλλλ
λλλλλλλλ
λλλλλλλλ

where
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Markov chain modeling (cont.)

Example

0==ΛΛππ [[ ]]nππππππππ �21==
S3

λλ12

S2S1 λλ21

λλ13

λλ31

λλ32
λλ23

(( ))
(( ))

(( ))















++−−
++−−

++−−
==ΛΛ

32313231

23232121

13121312

λλλλλλλλ
λλλλλλλλ
λλλλλλλλ

(( ))
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(( ))





==++−−++
==++++−−
==++++++−−

0

0

0

33231232131

32322321121

31321211312

ππλλλλππλλππλλ
ππλλππλλλλππλλ
ππλλππλλππλλλλ

and



21

7 - 41©  P. Raatikainen Switching Technology  / 2003

Birth-death process

Birth-death process is a special case of continuous-time Markov
chain, which models the size of population that increases by 1 (birth)
or decreases by one (death).

S0

λλ0

µµ1

S1

λλ1

µµ2

S2

λλ2

µµ3

S3

λλ3

µµ4

...

=>

Balance equations:

- State S0

- State S1

- State Sk

=>

=>

λλ ππ λλ ππ0 0 1 1==

(( ))λλ µµ ππ λλ ππ λλ ππ1 1 1 0 0 2 2++ == ++

(( ))λλ µµ ππ λλ ππ λλ ππ
k k k k k k k−− −− −− −− −−++ == ++

1 1 1 2 2

ππ λλ
µµ

ππ1

0

1

0==

ππ λλ λλ
µµ µµ

ππ2
1 0

2 1

0==

ππ λλ λλ λλ
µµ µµ µµ

ππk

k

k

== −−1 1 0

2 1

0

�

�
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Birth-death process (cont.)

Sk

λλk

µµk+1

Sk+1
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(k=1, 2, 3, …)where

Substituting these expressions for ππk into yields
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Example of birth-death process

A switching system has two control computer, one on-line and one
standby. The time interval between computer failures is exponentially
distributed with mean tf . In case of a failure, the standby computer
replaces the failed one.
A single repair facility exist and repair times are exponentially
distributed with mean tr .
What fraction of time the system is out of use, i.e., both computers
having failed?

The problem can be solved by using a three state birth-death model.

S0

λλ0

µµ1

S1

λλ1

µµ2

S2
S0

11//tr

11//tf

S1

11//tr

11//tf

S2=>
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Example of birth-death process (cont.)

If tr/tf = 10  , i.e. the average repair time is 10 % of the average
time between failures, then ππ0 =0.009009 and both computer will
be out of service 0.9 % of the time.

S0 - both computer operable
S1 - one computer failed
S2 - both computer failed

1
1

1

1

1

1
0

2

ππ
== ++ ++
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

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


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t

t
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t t t t
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r r f f

=>

(probability that both
computers have failed)
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Additional reading of Markov chain
modeling

Switching Technology S38.165
http://www.netlab.hut.fi/opetus/s38165
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Markov chain modeling

A continuous-time Markov Chain is a stochastic process {X(t): t ≥≥0}

• X(t) can have values is  S={0,1,2,3,...}
• Each time the process enters a state i, the amount of time it spends

in that state before making a transition to another state has an
exponential distribution with mean 1/λλi

• When leaving state i, the process moves to a state j with probability
pij where pii=0

• The next state to be visited after i is independent of the length of
time spend in state i

S0

λλ0

µµ1

S1

λλ1

µµ2

S2

λλ2

µµ3

S3

λλ3

µµ4

...
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Markov chain modeling (cont.)

Transition probabilities

Continuous at t=0, with

Transition matrix is a function of time
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tP
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Markov chain modeling (cont.)

Transition intensity:
(rate at which the process leaves
state j when it is in state j)

(transition rate into state j when
the process in is state i)

)0()( jjj p
dt
d

t −−==λλ

ijiijij pp
dt

d
t λλλλ ==== )0()(

The process, starting in state i, spends an amount of time in that
state having exponential distribution with rate λλi . It then moves to
state j with probability

jip
i
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Markov chain modeling (cont.)

Chapman-Kolmogorov equations:

Since p(t) is a continuous function

)()0()0()( 2totp
dt
d

ptp ijijij ∆∆++∆∆++==∆∆

0,

,
)()()(

≥≥∀∀
∈∈∀∀

==++ ∑∑
∈∈ ts

Sji
sptpstp

Sk
kjikij

We have defined   => )0()( ijij p
dt

d
t ==λλ

For i≠≠j:

For i=j:

ttotptp ijijijij ∆∆≈≈∆∆++∆∆++==∆∆ λλλλ )()0()( 2

ttotptp iiiiiiii ∆∆++≈≈∆∆++∆∆++==∆∆ λλλλ 1)()0()( 2

(for small ∆t)

(for small ∆t)
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Markov chain modeling (cont.)

From Chapman-Kolmogorov equations:

∑∑∑∑
≠≠

∆∆++∆∆==∆∆==∆∆++
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Taking the limit as ∆t → 0
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k
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kjikijij ∆∆
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
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k
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∆∆
∆∆





++==

∆∆
−−∆∆++ ∑∑∑∑ )(

)()(
)()( 2
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jitptp
dt
d

kj
k

ikij ,)()( ∀∀== ∑∑ λλ
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Markov chain modeling (cont.)

The process is described by the system of differential equations:

jitptp
dt
d

kj
k

ikij ,)()( ∀∀== ∑∑ λλ

which can be given in the form

jitPtP
dt

d
,)()( ∀∀ΛΛ== titp

j
ij ,1)( ∀∀==∑∑

0)1()( ====∑∑ dt
d

tp
dt
d

j
ij

0)( ==∑∑
j

ij tp
dt
d

0==∑∑
j

ijλλ The sum of of each row of ΛΛ is zero !
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Markov chain modeling (cont.)

Example

(( ))
(( ))

(( ))















++−−
++−−

++−−
==ΛΛ

32313231

23232121

13121312

λλλλλλλλ
λλλλλλλλ
λλλλλλλλ

The sum of of each row of ΛΛ must be zero !

S3

λλ12

S2S1 λλ21

λλ13

λλ31

λλ32
λλ23
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Markov chain modeling (cont.)

Steady state probabilities

Must be non-negative and must satisfy 1
1

==∑∑
==

n

i
iππ

jijt
tp ππ==

∞∞→→
)(lim (Independent of initial state i)

In case of continuous-time Markov chains balance equation
used to determine ππ.
For each state i, the rate at which the system leaves the state
must equal to the rate at which the system enters the state

=> llikkijjiii ππλλππλλππλλππλλ ++++==
k

j

i

l
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Markov chain modeling (cont.)

Balance equation

Steady state distribution is computed by solving this system
of equations

i
ik

kkii
ij

ij ∀∀==




 ∑∑∑∑
≠≠≠≠

ππλλππλλ

i
ik

kkii
ij

ij ∀∀==




 ∑∑∑∑
≠≠≠≠

ππλλππλλ

1
1

==∑∑
==

n

i
iππ
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Markov chain modeling (cont.)

An alternative derivation of the steady-state conditions begins with
the differential equation describing the process:

Suppose that we take the limit of each side as t →→ ∞∞

jitptp
dt
d

kj
k

ikij ,)()( ∀∀== ∑∑ λλ

(( )) (( ))∑∑∞∞→→∞∞→→
==

k
kjik

t
ij

t
tptp

dt
d λλlimlim

(( )) (( ))∑∑ ∞∞→→∞∞→→
==

k
kjik

t
ij

t
tptp

dt
d λλlimlim

0==∑∑
k

kjkλλππ

=>

=>

=> i.e.    ππΛΛ=0
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Markov chain modeling (cont.)

Example

0==ΛΛππ [[ ]]nππππππππ �21==
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