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Switch Fabrics

Switching Technology S38.165
http://www.netlab.hut.fi/opetus/s38165
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Switch fabrics

• Multi-point switching
• Self-routing networks

• Sorting n etworks
• Fabric implementation technologies
• Fault tolerance and reliability
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Sorting networks

• Types of blocking

• Internal blocking

• Output blocking

• Head of line blocking

• Sorting to remove internal blocking

• Resolving output conflicts

• Easing of HOL blocking
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Internal blocking

• Internal blocking occurs at the internal links of a switch fabric

• In a switch fabric, which implements synchronous slot timing,
internal blocking implies that some input (i) to output (j)
connection cannot be established (even if both are idle ones)

• Internally non-blocking switch makes all requested connections
(i, ji), provided that there are no multiple request to the same
output (ji ≠ ji’  if i ≠ i’, 1≤i,j≤N)
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Output blocking

• Internally non-blocking switch can block at an output of a switch
fabric due to conflicting requests, i.e., ji = ji’ for some i ≠ i’

• When output conflict occurs, switch should connect one of the
conflicting inputs to requested output => output conflict resolution

• Major distinction between a circuit and packet switching node
• a packet switching node must solve output conflicts per time-slot (time-

slots are not assigned beforehand)

• a circuit switching node solves
possible output conflicts and
assigns a time-slot for entire
duration of a connection
beforehand
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Head of line (HOL) blocking

• Packets not forwarded due to output conflict are buffered
=> more delay experienced

• Buffered packets normally served in a FCFS (First Come First
Served) manner
=> HOL blocking introduced at the input queues

• Packet facing HOL blocking
may prevent the next packet in
the queue to be delivered to
a non-contended output
=> throughput of a switch
reduced
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Sorting to remove internal blocking

• If connection requests at the inputs of  a banyan network are
compact and in strictly increasing order
=> input-output paths are link-disjoint
=> banyan internally non-blocking

• A method for building an internally non-blocking network is to apply
a sorting network in front of a banyan network to generate a strict
increasing order of destination addresses for the banyan network

• A sorting network connects an input i, which has a connection
request to output ji, to an output of a sorting network according to
the position of ji in the sorted list of destination requests (see figure)

• Sorting networks can be formed by interconnecting nodes of smaller
sorting networks (such as 2x2)

• Self-routing should be applied in the sorting network
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Internally non-blocking and self-routing
switch
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Sorting to remove internal block ing

• A permuted list (a1, a2 , …, aN) can be restored to its original order
by sorting

• A switching network for a maximal connection pattern can be
obtained from a sorting network by treating 2x2 sorting elements
as 2x2 switching elements

• Asymptotic lower bound for 2x2 sorting elements to build a NxN
sorting network is Nlog 2N (as for a respective switching network)
- no sorting network found so far to obtain this bound

• Sequential merge-sorting process can be used to obtain Nlog2N
bound for the number of binary sorts
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Merge-sorting algorithm

Merge-sorting algorithm

• Input : unsorted list AN = (a1, a2 , …, aN)

• Sort procedure:
Sort (AN) = Merge {Sort(a1, …, a½N), Sort (a½N+1 , …, aN)}

• Merge procedure:
Merge {(a1, …, am), (a’1, …, a’m’)}

 = {a1, (Merge ((a2, …, am), (a’1, …, a’m’))}  if  a1≤ a’1
= {a’1, (Merge ((a1, …, am), (a’2, …, a’m’))} if  a1> a’1

• Procedure Merge, called by procedure Sort, takes two sorted lists
and merges them by comparing the smallest elements in each of
the two sorted lists
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Merge-sorting algorithm (cont.)

• Merging of two sorted lists (N/2 numbers in each) requires N
binary sorts

• Total complexity of sorting N numbers is given by
C(N) = 2C(N/2) = N + 2(N/2 + 2C(N/4)) = … = Nlog2N

• Due to sequential nature of procedure Merge the sorting takes at
least O(N) time
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Odd-even merging
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- number of sorting stages is log2N
- number of sorting elements is 0.5N [log2N-1]+1
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Bitonic list

• Bitonic list  AN = (a1, a2 , …, aN) is a list for which it holds that
a1 ≤ a2 ≤ … ≤ ak-1 ≤ ak  and ak ≥ ak+1 ≥ … ≥ aN-1 ≥ aN         (1≤ k ≤ N)

• Unique cross-over property - when comparing a monotonically
increasing list with a monotonically decreasing list, there is at most one
position where the two lists cross-over in their values (see figures)
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Bitonic merging
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Recursive construction of a bitonic merger
- number of sorting stages is  log2N
- number of sorting elements is  0.5N log2N
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Sorting by merging
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Recursive construction of a sorting by merging network
- number of sorting stages is  0.5Nlog2N(log2N + 1)
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Odd-even sorting network example

➙ 2x2 UP SORTER

➙

2x2 DOWN SORTER

2x2
SORTER

4x4
SORTER

➙
➙

➙

➙
➙ ➙

➙

➙

➙
➙ ➙

➙

➙

➙
➙

➙

➙
➙

➙

8x8
SORTER

• Number of sorting stages is  0.5log2N(log2N + 1)
• Number of sorting elements is  0.25N[log2N(log2N - 1) + 4] - 1
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Bitonic sorting network example
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• Number of sorting stages is  0.5log2N(log2N + 1)
• Number of sorting elements is  0.25Nlog2N(log2N + 1)
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Batcher-Banyan self-routing network
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Resolving output blocking

• Packet switches do not maintain a scheduler for dedicating time-slots
for packets (at the inputs)
=> output conflicts possible
=> output conflict resolution needed on slot by slot basis

• Output conflicts solved by

• polling (e.g. round robin, token circulation)
-  do not scale for large numbers of inputs
-  outputs just served have an unfair advantage in getting a new time-slot

• sorting networks (making a banyan network internally non-blocking)

• An example of sorting networks is sort-purge-concentrate network
• when sorting self-routing addresses, duplicated output requests appear

adjacent to each other in the sorted order (see figure)
- either one has to be purged (deleted)
- successful delivery is acknowledged and purged packets are re-sent
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Sort-purge-concatenate network

1

2

Input
i

3

4

Output
j

4

Dest.
ji

1

2

3

Sorting
network

Concentration 
network

Compact and sorted 
output addresses

1

3

4

1

3

3

4

3

1

4

3

Purge
network

Routing network
(Banyan)

Sorted destination
addresses

• A sorting network can easily handle packet priority  by
-  adding a priority field in the self-routing address
-  higher priority packets are placed in a favorable position before purging
-  support of priority is an essential feature when integrating circuit and
packet switching in a sort-banyan network
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Resolving HOL blocking

• HOL blocking solved by

• allowing packets behind a HOL packet to contend for outputs

• allow multiple delivery of conflicting HOL packets to an output
buffer
 -  multiple rounds of arbitration for sort-banyan network
 -  multiple planes of sort-banyan networks

•  a good solution is to implement multiple input buffers (one for
each output if possible) and if the packet in turn cannot be
transmitted due to HOL, transmit an other packet from another
buffer
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Construction of a multipoint
packet switch

In a self-routing multipoint switch
- incoming packets destined to multiple outputs
- packets carry all destination addresses in their headers
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Batcher-Banyan example
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Switch fabrics

• Multipoint switching
• Self-routing networks

• Sorting networks
• Fabric implementation technologies
• Fault tolerance and reliability
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Fabric implementation technologies

• Time division fabrics
• Shared media
• Shared memory

• Space division fabrics
• Crossbar
• Multi-stage constructions

• Buffering techniques
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Time division fabrics

• Shared media
• Bus architectures
• Ring architectures

• Shared memory
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Shared bus

Bus architecture
• Switching in time domain, but time and space switching

implementations enabled
• Easy to implement and low cost (cost index = N)

• One time-slot carried through the bus at a time
=> limited throughput (multi-casting possible)
=> low number of line interfaces
=> limited scalability
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Shared bus (cont.)

Bus architecture
• Internally non-blocking implementations require high capacity

switching bus => throughput ≥ aggregate capacity of line interfaces

• Inherently a single stage switch, but TST-switching possible if line-
cards support time-slot interchange

• Multiple-bus structures can be used to improve reliability and
increase throughput
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Ring architectures

Ring architecture
• Rings coarsely divided into source and destination release rings

– in source release (SR) rings only one switching operation in
progress at a time
=> limited throughput (like a shared bus)

– destination release (DR) rings allow spatial reuse,
i.e., multiple time-slots can be carried through the
 ring simultaneously
=> improved throughput

• Switching in time domain, but time and space
switching implementations enabled

• Usually easy to implement and low cost
(cost index = N)

• Scales better than a shared bus
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Ring architectures (cont.)

Ring architecture
• Internally non-blocking implementations

require that throughput of a ring bus ≥
aggregate capacity of line interfaces

• Throughput can be improved by implementing
parallel ring buses - control usually distributed
=> MAC implementations may be difficult

• Multi-casting relatively easy to implement

• Inherently a single stage switch, but TST-
switching possible if line-cards support time-
slot interchange

• Multiple rings can be used to implement
switching networks
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Ring architectures (cont.)

Dual ring architecture
• Multiple rings used to improve throughput, decrease internal

blocking, improve scalability and increase reliability
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Shared memory

Shared memory architecture
• Switching in time domain, but time and space switching

implementations enabled

• Inherently a single stage switch, but allows TST-switching if line-
cards support time-slot interchange

• Easy to implement and low cost (cost index = N)
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Shared memory (cont.)

Shared memory architecture
• Every time-slot carried twice through the bus

=> low throughput
=> low number of line interfaces
=> limited scalability

• Internally non-blocking if throughput of a switching bus and
speed of shared memory ≥ aggregate capacity of line interfaces

• Performance can be improved by dual bus architecture or
replacing the bus with a space switch (such as crossbar)
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Shared memory (cont.)

Shared memory architecture
• Dual-bus architecture improves throughput, decreases internal

blocking, improves scalability and increases reliability
• Memory speed requirement equal to that of single bus solutions
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Dimensioning example

A shared memory architecture, which uses a shared bus to
connect line interfaces to the memory, is used to implement a
switching equipment. The bus is 32 bits wide and bus clock is 150
MHz. Three clock cycles are needed to transfer a 32 bit word
through the bus and 20 % of the bus capacity is used for other
than switching purposes. How many E1 interfaces can be
supported by the switch ? What is the required memory speed ?

Solution:

If the bus transfers an eight bit time-slot (of a 64 kbit/s PDH channel)
across the bus at a time, a single bus solution can transfer
0.8x(150/3) Mbytes/s = 40 Mbytes/s
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Dimensioning example (cont.)

Solution (cont.):
In a single bus solution, half of the bus capacity (20 Mbytes/s) is used
for storing time-slots to memory and another half for reading time-slots
from memory
 => memory speed requirement is 1/(20 Mbytes/s) = 50 ns
 => during a 125 µs period (= duration of an E1 frame) the bus
switches 125x20 bytes = 2500 time-slots and the number of supported
E1 links is 2500/32 ≈ 78

Throughput of the switching system can be increased by adding a 32 bit
receive-register to the shared switch memory block, which enables to transfer
4 time-slots (in parallel) through the bus at a time. By doing so, the throughput
of the bus gets four fold and the number of supported E1 links increases to
312. Time-slots are still written one by one to the switch memory, and thus the
memory speed requirement is 12.5 ns.
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Space division fabrics

• Crossbar
• Multi-stage constructions
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Crossbar

Crossbar architecture
• Inherently a space division switch

• Allows to build TST-switches if interfaces implement time-slot
interchange functionality

• Hard to implement large switches due to complicated control
schemes
=> high cost (cost index = N2)

• Commercial high-speed NxN crossbar components enable
modular and relatively inexpensive fabric constructions, but still
control of the switch is a problem
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Crossbar (cont.)

Crossbar architecture
• Inherently a strict-sense non-blocking fabric architecture
• Possible to carry N time-slots through the switch at a time

=> high throughput
=> possible to implement a large number of line interfaces
=> scales well within the limits of available modular components
=> scaling up means increase of cross-point count from NxN to
to (N+k)x (N+k)

• Multi-casting easy to implement
Switch control
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Crossbar (cont.)

C - connection control

Example implementation of a crossbar
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Crossbar (cont.)

An 8x8 switch constructed of four 4x4 crossbar blocks

Notice that doubling of input/output count increases the number of
crossbar components from one to four.
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Multi-stage building blocks

• Multi-stage switches usually constructed of 2x2 switching blocks
• Implemented usually in FPGAs (Field Programmable Gate Arrays)

and/or ASICs (Application Specific Integrated Circuit)
• FPGA for experimental use and low volume production
• ASICs for high volume production

• Batcher-banyan network most popular
• Used to implement space division

switching

• Allows to build TST-switches if
interfaces implement time-slot
interchange functionality
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Multi-stage building blocks (cont.)

• Hard to implement large circuit switches due to complicated control
schemes (especially rearrangeable fabrics)
=> high cost (cost index ∼∼ CNlog2N)

• Suitable for packet switching when self-routing functionality included

• Fixed duration time-slot implementations favored to obtain strict-
sense non-blocking fabrics

• Possible to carry N time-slots through the switch at a time
=> relatively high throughput
=> scalable only if larger networks can be factored using smaller
NxN components
=> scaling up means increase of cross-point count from ∼∼ CNlog2N
to ∼∼ C(N+k)log2(N+k)

X
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Out1
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Problems with multi-stages

• Path search required

• Fast connection establishment implies need for fast control system
 => part of switching capacity is lost if control system is not fast
enough

• Multi-cast is not self evident, because multi-cast complicates path
search and control scheme and increases blocking probability

• Multi-slot connections (i.e. several slots used for a particular
connection) complicate matters
- especially if path delay is not constant, e.g., slots belonging to the
same connection may arrive to outputs in different order than they
were at the inputs
- blocking increases
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Trends in fabric technologies

• Memory technology getting faster and faster

• Current SRAM (Static Random Access Memory) technology allows
easy implementations of large PDH switches, e.g. full matrix for 8000
E1 (2M) PDH circuits - bigger fabrics hardly needed in narrow band
networks
=> in narrow band networks the trend over the last 10 years has
been to build full matrix fabrics based on shared memory

• However, when striving for broadband communications, memory
based switch fabrics do not scale to bandwidth needed
=> multi-stage and crossbar switches have their change
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Trends in fabric technologies (cont.)

• Multistage fabrics were “reinvented” at the advent of ATM
- ATM suits perfectly for fixed length time-slot switching
- self-routing and sorting applies for ATM cell routing
- blocking and buffering causes headache
=> in spite of huge research effort, there have been very few commercial
multi-stage fabrics available (mostly proprietary ASICs)

• Development of IC technologies, increased packing density (number
of gates/chip) and increased speed, have enabled  crossbar fabrics
suitable for high-speed switching applications (N = 2 … 64 and line
rate 2.5 … 40 Gbit/s)
- examples: Cx27399/Mindspeed, ETT1/Sierra, CE200/Internet Machines
and PI140xx/Agere

• Packet switching and advent of optical networking favors multi-
stages and crossbars
=> packet switching introduces a new problem - buffering
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Technological tradeoffs in switch fabric
design

• When trying to simplify path search and to speed up connection
establishment
=> bus speed increases (inside fabric)
=> faster memory required => power consumption increases
=> integration level of a cross-point product needs to be increased
=> faster memory required, etc.

• If fast memory not available, use
=> crossbar fabrics (for small switches)
=> multistage fabrics (for large switches)
- real switching capacity may be less
  than theoretical
- minimization of cross-point count
  often pointless
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Electronic design problems

• Signal skew - caused by long signal lines with varying capacitive load
inside switch fabric and/or on circuit boards

• Mismatching line termination - caused by long signal lines combined
with varying (high) bit rates

• Varying delay on bus lines - caused by differently routed bus lines (non-
uniform capacitive load)

• Crosstalk - caused by electro-magnetic coupling of signals from adjacent
signal lines

• Power feeding and voltage-swing - incorrectly dimensioned power
source/lines cause non-uniform voltage and lack of adequate filtering causes
fluctuation of voltage

• Mismatching timing signals - different line lengths from a centralized
timing source cause phase shift and distributed timing may suffer from lack of
adequate synchronization
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Some design limitations

• Speed of available components vs. required wire speed and slot
time interval

• Component packing density and power consumption vs. heating
problem

• Maximum practical fan-out vs. required size of fabric

• Required bus length inside switch fabric
- long buses decrease internal speed of fabric
- diagnostics get difficult

• IPR policy
- whether company wants to use special components or more
general all-purpose components
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Design optimization example

• An NxN switch fabric is to be designed and there are three alternative
crossbar components a, b and c available
- a is an NaxNa fabric component
- b is an NbxNb fabric component
- c is an NcxNc fabric component
and Na<Nb<Nc≤N

• Component a has entered the market at time ta, b at time tb and c at time tc
• Product development starts at  tpd and the switch product should come in the

market at  tm. Components are expected to be available when the product
development starts    => ta < tb < tc ≤ tpd < tm

• Price of a component develops with time and is generally given by
P(t)=Cf(t) + D, where Cf(t) is a time dependent and D a constant part of
component’s price

• Question: Which one of the three components to choose for constructing an
NxN switch fabric ?
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Design optimization example (cont.)

• As an example, let’s assume that price of each component is a function of
time and is given by P(t)=Ce-t/T+ D ,
where C, D and T are component specific constants
=> Pa(t)=Cae-t/Ta+ Da , Pb(t)=Cbe-t/Tb+ Db and Pc(t)=Cce-t/Tc+ Dc

• Number of alternative crossbar components needed to build an NxN switch
=> Ka = ceil[N/Na]

2, Kb = ceil[N/Nb]
2 , Kc = ceil[N/Nc]

2

• Alternative component costs as a function of time t
=>  Pa(t)=Cae-(t- ta)/Ta+ Ca

=>  Pb(t)=Cbe-(t- tb)/Tb+ Cb

=>  Pc(t)=Cce-(t- tc)/Tc+ Cc

• These functions can be used to draw price development curves to make
comparisons
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Design optimization example (cont.)

Numerical example:
• Let N = 64, Na = 16, Nb = 32, Nc = 64, Ta = Tb = Tc = 3 time units (years),

Ca = 20,Cb = 50, Cc = 100 and Da = 10, Db = 20, Dc = 40 price units (euros)

• Product development period is assumed to be 1 time unit (year) and
tb = ta +1.5, tc = ta +3, tm = ta +4  => tpd = ta + 3

• Choosing that tpd = to = 0  => ta = t + 3, tb = t +1.5, tc = t, tm = t -1  (t ≥ tpd = 0 )

• Number of components needed Ka = 16, Kb = 4, Kc = 1

• Switch fabric component cost functions

=>  Pa(t)=16[20e-(t+3)/3 + 10]
=>  Pb(t)=4[50e-(t+1.5)/3 + 20]
=>  Pc(t)=100e-(t)/3 + 40
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Design optimization example (cont.)

• Although the price of component c is  manifold compared to the price of
component a or b, c turn out to be the cheapest alternative

• Another reason to choose c is that it probably stays longest in the market
giving more time for the switch product

Numerical example (cont.) :

Component cost
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