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Recursive factoring of a strict-sense
non-blocking network

• A strict-sense non-blocking network can be constructed recursively,
but the size of network (number of cross-points) crows fast as a
function of the number of inputs, namely CNlog2N

• Instead of starting with the smaller factor for p let’s use switch
blocks of 

• Let N = 2n and n = 2l  then we are factoring square switches with
number of inputs and outputs being power of 2
=>  condition for a strict-sense non-blocking network states that
there are r2 ≥ 2x2n/2 - 1 second stage SBs

• Let choose r2 = 2x2n/2 then sizes of the
-  1st stage switches are 2n/2 x 2n/2+1

-  3rd stage switches are 2n/2+1 x 2n/2

• Each of these can be made of two SBs each of size 2n/2 x 2n/2

NxN
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Recursive factoring of a strict-sense
non-blocking network (cont.)

• 2nd stage switches are of size 2n/2 x 2n/2

• The three stages consist of 6x2n/2  SBs, each of size 2n/2 x 2n/2

• Let F(2n ) be the cross-point complexity of an NxN switch then

• F(2n) = 6x2n/2F(2n/2 )

 = 6lx2n/2+n/4+…+1F(21)
 < 6lx2nF(2)

 = N(log2N)2.58F(2)

 = 4N(log2N)2.58

• The difference between rearrangeable and strict-sense non-
blocking networks lies in the exponent for the log2N term
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Strict-sense non-blocking network with
smaller number of cross-points

• Strict-sense non-blocking networks with smaller number of cross-
points than F(2n) = 4N(log2N)2.58  can be constructed

• One alternative is to use Cantor network, which is constructed
using Benes networks, multiplexers and demultiplexers

• i-th input of Cantor network connected  to j-th  input of j-th
Benes network using j-th output of a 1xm demultiplexer

• i-th output of j-th Benes network connected  to i-th  output of
Cantor network using j-th input of a mx1 multiplexer

• When N is known, number of required Benes planes to have a
strict-sense non-blocking Cantor network is  m = log2N

• Since a Benes network has a cross-point count of 4Nlog2N, number
of cross-points of a Cantor network is roughly  4N(log2N)2 (when
ignoring cross-points of the multiplexers and demultiplexers
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Cantor network
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Cantor network s trict-sense
non-blocking

Proof:
• Markings

• m number of parallel Benes networks
• k number of stage in a Benes network

• A(k) number of reachable 2x2 SBs without rearrangements in
stage k (1≤k≤log2N) starting from an input of a Cantor network

• Reachable 2x2 SBs in consecutive stages
• A(1) = m
• A(2) = 2A(1) - 1
• A(3) = 2A(2) - 2
• A(k) = 2A(k-1) - 2k-2 = 22A(k-2) - 2x2k-2 = 2k-1A(1) - (k-1)x2k-2

• A(log2N) = 2log2N-1m - (log2N -1) 2log2N-2

= ½Nm - ¼ (log2N -1)N
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Cantor network strict-sense
non-blocking (cont.)

• Cantor network is symmetrical at the middle
=> the same number of center stage nodes are reachable by an
output of a Cantor network

• Total number of SBs in center stages is Nm/2 (m Benes networks)

• If the number of center stage SBs reached by an input and an
output exceeds Nm/2 then there must be a SB reachable from both

• Hence strict-sense non-blocking is achieved if

[ ]
2

Nm
1)N-N(log-Nm2 24

1
2
1 >

=> m > log2N - 1

Notice that a strict-sense non-blocking Cantor network is
constructed of log2N  rearrangeably non-blocking Benes networks
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Visualization of proof
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Dimensioning example of Cantor network

• number of multiplexers =  64 000
• number of demultiplexers =  64 000
• number of Benes networks    m = log2N =  16

=> number of outputs in demultiplexers =  16
=> number of inputs in Multiplexers =  16

• number of  stages in Benes networks = 2log2N - 1 = 2x16-1 = 31
• number of 2x2 SBs in Benes networks = Nlog2N = 216 * 32

 ≈ 2N  SBs in each Benes network

Number of inputs and outputs of a switching network should be 
N = 32 x 2048 = 216 ≈≈ 64 000
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Control algorithms

• Control algorithms for networks, which are formed recursively by
three stage factorization

• Control algorithms can be applied recursively
• works well for strict-sense non-blocking networks when setting up

connections one at a time
• for rearrangeable networks adding just one connections may cause the

connection pattern to change dramatically
=> adding a connection to a Benes network can be as complicated as
reconnecting all input-output pairs

• Let’s examine control algorithm for a Benes network, formed by
factoring recursively

• N = 2m  inputs and outputs
• start with a totally disconnected network and establish requested

connection patterns
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Looping algorithm

During the first factorization of an NxN switch each 2x2 input SB may
be connected to a 2x2 output SB either via upper (U) or lower (L)
N/2xN/2 switch (see figure)

1) Initialization
Start with 2x2 input SB 1 and mark it by S

2) Loop forward
Connect an unconnected input of S to desired output by upper
switch U. If no connection is required, go to 4.

3) Loop backward
Connect the adjacent output of the output just visited  to the desired
input by the lower switch L. If no connection is required, go to 4.
Otherwise, the newly visited input SB becomes S. Go to 2.

5 - 12©  P. Raatikainen Switching Technology  / 2003

Looping algorithm (cont.)
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4) Start new loop
Choose another SB, which has not been visited yet as S. Go to 2.
If all connections for the NxN switch are made, the algorithm
terminates at level m.
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Looping algorithm (cont.)

• Looping algorithm is applied recursively to establish connections for
the upper switch U and lower switch L

• Computation of paths is complex and time consuming and it can be
shown that the total run time of the algorithm to compute paths for all
inputs and outputs is proportional to (log2N )2

• Looping algorithm
• suits for circuit switching, because connections computed per call
• not suitable for packet switching, because connections may have

to be recomputed for all N input-output pairs within duration of a
packet

• dedicating a processor for each input and output SB connection
=> computations become faster, but exchange of path information
between processors gets very complicated

=>  Alternative switching architectures needed for packet switching
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Switch fabrics

• Multi-point switching
• Self-routing networks

• Sorting networks
• Fabric implementation technologies
• Fault tolerance and reliability
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Graph presentation of connection
patterns

Multi-cast switching 

I O I O
Point-to-point switching

One-to-one connections One-to-many connections
C = {(i,o)| i∈∈I , o∈∈O}
I f  (i,o) ∈∈C and (i,o’)∈∈C => o=o’
I f  (i,o) ∈∈C and (i’ ,o) ∈∈C => i=i’

C = {(i,ni)| i∈∈I , ni⊂⊂O}

C -  a logical mapping from inputs to outputs
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Graph presentation of connection
patterns (cont.)

I O
Concentrator

One-to-one connections

A

C = {(i,o)| i∈∈A⊂⊂I , o∈∈O}
I f  (i,o)∈∈C and (i,o’)∈∈C => o=o’
I f  (i,o)∈∈C and (i’ ,o) ∈∈C => i=i’

I O

Super-concentrator
(compact if B compact)

One-to-one connections

A

C = {(i,o)| i∈∈A⊂⊂I , o∈∈ΒΒ⊂⊂O}
I f  (i,o)∈∈C and (i,o’)∈∈C => o=o’
I f  (i,o)∈∈C and (i’ ,o)∈∈C => i=i’

ΒΒ

To any 
member in O To any 

member in 
specific B
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Graph presentation of connection
patterns (cont.)

Copy
I O

One-to-many connections

A

C = {(i,ni)| i∈∈A⊂⊂I, ΣΣni∈∈N}

Order and identity of outputs
ni ignored  (output unspecific)

To any ni 
 members in O
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Combinatorial bound

•  ζζ(G) is log2 of the number of distinct and legitimate C realized by G

• R is number of cross-points in a switch fabric

•  ζζ measures combinatorial power of a graph, may bear no direct
relationship to control complexity of finding a switch setting to realize
a connection pattern

• R2 is the number of states in a switch fabric of R cross-points
=> rough upper bound for the number of Cs  in G is  ζζ≤≤ R

• Better upper bound obtained by removing
- all non-legitimate states, e.g., those in which two cross-points are
feeding one output
- one of states for which another state produces the same C

• Such improvements not easily found
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Combinatorial bound (cont.)

•  For each connection function, which defines a set of legitimate C,
we may compute the logarithm of the total number of distinct C,
marked by ζζ

• A graph G is rearrangeably non-blocking if all such C can be
realized  by G
 => we must have ζζ≤≤ ζζ(G) for rearrangeably non-blocking G

Let us look at number of different C measured as ζζ realized by
different connection functions

It follows that by observing the number of distinct C realized by
different connection functions, we can find the lower bound of
complexity for any rearrangeably non-blocking fabric.
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Lower combinatorial bound for
point-to-point conn ections

• NxN switch with full connectivity (any element in I can be connected to
any distinct element in O)

• Obviously network that can realize all maximal connection patterns can
realize less than maximal patterns

• Number of C we want to realize equals to N!

• Sterling’s approximation:

=>  N! ≈≈ √ NN+½ e-N = √ exp2(Nlog2N - Nlog2e + ½log2N)

=>  ζζpt-pt = log2N! ≈≈ Nlog2N - 1.44N + ½log2N = O(NlogN)

• If 2x2 SBs are used, at least Nlog2N such SBs are needed to realize

the N! possible maximal connection patterns

=> A poit-to-point interconnection network has a complexity of O(NlogN)

2ππ 2ππ
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Visualization of point-to-point mappings

N = 2  =>  Lc= 2

N = 3   => Lc= 6

Construction of C: Enumerate inputs, mix them in an arbitrary order.

Number of connection patterns in point-to-point switching Lc= N!
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Lower bound of Benes network
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• Number of 2x2 SBs in a Benes network:
=> 2log2N - 1 stages and each stage has N/2 SBs of size 2x2
=> total number of 2x2 SBs is Nlog2N - N/2 , which is close to ζζpt-pt

=> total number of cross-points 4(Nlog2N - N/2) ≈≈ 4Nlog2N
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Lower combinatorial bound for
multi-point connections

• Let’s suppose that any input can be connected to any output, i.e.,
each element in O may choose any one of the N inputs
=> total number of connection patterns C is NN = exp2(Nlog2N)
=> ζζmcast = Nlog2N
=> ζζmcast - ζζpt-pt = 1.44N

• A fabric architecture that would implement multi-casting and would
be close to the lower bound of complexity is not known yet

• It is known that Benes network implements multi-cast if the number
of 2x2 SBs is doubled compared to the pt-to-pt case
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Visualization of multi-cast mappings

etc. …

Number of conn ection p atterns in multi-cast switching Lc= NN

N = 3  =>  Lc= 27
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Lower combinatorial bound for
concentrator

• A concentrator with M inputs and N outputs (M>N)

• Connection pattern C defined to be a set of any N of the M inputs

• Number of these sets =
M
N







ζζ concentrator = log
M!

N!(M N)!2 −−

≈≈
−− −−

log
M!

2 N(M N)!
M

N (M N)2

M

N M-Nππ

• Sterling’s approximation:

Entropy function:  H(c) = -clog2c - (1-c)log2(1-c)

M-1+N

M-1






0

0,2

0,4

0,6

0,8

1

1,2

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1≈ ≈ MH(c)
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Lower combinatorial bound for
concentrator (cont.)

• For given C => ζζconcentrator = O(M)

• This lower bound is smaller by a factor of logM than that of point-to-
point or multi-point networks

• Although concentrators with linear complexity (linear to number of
inputs) can be shown to exist, there are no known practical
solutions - complicated control algorithms

• It can be shown that a strict-sense non-blocking concentrator is as
complex as a point-to-point non-blocking concentrator - M logM

• => MlogM-fabrics are used for concentration
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Visualization of concentrator mappings

Concentrator MxN = 4x2 =>  Lc = 6

Number of connection patterns in concentrator Lc= (  )=
M
N

M!
N!(N-M)!
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Lower combinatorial bound for
super-concentrator

• A super-concentrator with M inputs, N outputs and K elements
(K≤≤ M,N)

• Connection pattern C defined to be a legitimate set of C = (A, B)
by all A and B with K elements

• Total number of these sets  =
M

K

N

K












ζζ super con−− ≈≈ 











M H
K
M

+ N H
K
N

• Super concentrators more complex than concentrators
• Compact super-concentrator specifies output set B once the

starting position of the compact sequence is specified => there are
N possible starting positions and hence

ζζ super con−− ≈≈ 



M H

K
M

+ log N2



15

5 - 29©  P. Raatikainen Switching Technology  / 2003

Visualization of super-concentrator
mappings

Super concentrator M=4, N=3 and K=2 =>  Lc = 18

Number of connection patterns in super-concentrator

Lc= (  )(  )=
M
K

M!N!
K!(M-K)!K!(N-K)!

N
K

5 - 30©  P. Raatikainen Switching Technology  / 2003

Lower combinatorial bound for
copy network

• A copy network with M inputs and N outputs

• Connection requests ni over all inputs i is equal to N

=> Number of connection patterns C equals to

=>  =>  ζζcopy ≈≈ (( ))M - 1+ N
M 1

M 1 N
H −−

−− ++






Complexity lower bound is liner in M and N
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Visualization of copy mappings

Number of connection patterns in copy network

Lc= (       )=
(M-1+N)!
(M-1)!N!

M-1+N
M-1

Copy MxN = 4x2  =>  Lc= 10

Lc is the number of ways N objects can be put into M bins.
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Compact super-concentrator example

Inverse Banyan network formed by recursive 2-stage factoring using
super-concentrators
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Two stage factoring

M/p x q super
concentrators

p
 h

o
ri

zo
n

ta
l p

al
es

COMPACT
SUPER CONCENTRATOR

p x N/q super
concentrators

q v
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al
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2-stage factoring can be used to construct compact super-
concentrators
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Distribution network

• Mirror image of a compact super-concentrator is called a
distribution network

• Provided that an input-output connection pattern C = { (i,oi) }
satisfies:
 - Compactness condition - active inputs i for the pair in C are
compact in modulo fashion
- Monotone condition - outputs oi to be connected to each active
input are strictly increasing in i in modulo fashion

a 2-stage network can be made a non-blocking one if the
connection requests arrive in sorted order - one way to achieve this
is to put a sorting network in front of a 2-stage network

• All point-to-point connections satisfying the above two conditions
can be connected using the distribution network
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Compact and monotone connection
pattern

A modulo-wise compact set 
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Construction of a distribution network

COMPACT
SUPER CONCENTRATOR DISTRIBUTION NETWORK

MIRROR IMAGE
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Example of a distribution network

Distribution network based on inverse Banyan network
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Construction of copy networks

• Distribution network which allows multiple connections between an
input and outputs is called a copy distribution network

• An input can make extra connections to outputs if the outputs
connected remain monotonically increasing with respect to the
inputs
- Compactness condition - active inputs i for the pair in C are
compact in modulo fashion
- Monotone condition - each element in Oi is greater than each
element in Oi’ if i >i’ in modulo fashion

• Inverse of many-to-one concentrator performs the copy functions
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Copy distribution network

DISTRIBUTION NETWORK

MULTI-COPY INPUT

MONOTONE
SET OF Oi
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Compact and monotone connection
pattern

Many-to-one concentration One-to-many copying
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Construction of multi-cast networks

• Multi-cast networks can be constructed, e.g. by concatenating a
copy network and a point-to-point network
- 3-stage factorization can be applied to get a point-to-point network
- resulting network consists of a concentrator, copy distribution
network and Benes network
=> number of stages increases
=> total number of 2x2 SBs is 2Nlog2N

• There are alternative ways to construct multi-cast networks, but
they encounter the above mentioned problems
- number of stages increases

• Difficult to calculate connections through the fabric

• Complicated fabric control algorithms

• One way to solve the control problem is to use self-routing
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Switch fabrics

• Multi-point switching
• Self-routing n etworks
• Sorting networks
• Fabric technologies
• Fault tolerance and reliability
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Self-routing

• Self-routing is a popular principle in fast packet switching
• Header of each packet contains all information needed to route

a packet through a switch fabric

• One or more paths may exist from an input to an output

• Interconnection network has the unique path property - if the
sequence of nodes connecting an input to an output is unique
for all input-output pairs

• An important class of networks having the unique property is
the generic banyan network
- NlogN complexity
- only one path connecting each input-output pair
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Examples of unique route network

Banyan network Baseline network

Shuffle exchange (Omega) network Flip network 
(inverse shuffle exchange)



23

5 - 45©  P. Raatikainen Switching Technology  / 2003

Self-routing principle

Switch block
 S1

Self-routing
address 
 bK ... b1 

Self-routing
address 
 bK ... b2 

Self-routing
address 

 bK  

Switch block
 S2

Switch block
 SK

n1

1
2

b1

...
...

n2

1
2

b2

...
...

nK

1
2

bK

...
...

• S1, S2 , … SK is a sequence of switch blocks, which have n1, n2,
… nK outputs respectively

• Route of a packet uses the bk-th output of switch block k
 => route given by the sequence b1 b2 … bk … bK

• At switch block k, packet routed to output bk and address bk is
removed from the self-routing header
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Self-routing principle (cont.)
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N=1

Edge 011 Edge 110

• In a self-routing shuffle exchange (NxN) network
- N = 2K inputs and outputs interconnected by K stages of 2K-1 nodes
- nodes numbered in each stage from 0 to 2K-1-1 (binary K-1 format)
- links (= edges) in each stage numbered  from 0 to 2K-1 (binary K format)
- outgoing links numbered by appending “0” (up going links) or “1” (down
going links) to the node’s number
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Self-routing in a shuffle exchange
network
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Edge 1

Edge 2

Edge 3

Edge 4

0 0 1 1 0 1

Destination

001

011

110

Edge 1 Edge 2 Edge 3 Edge 4

• Self-routing shuffle exchange scheme
- a packet at input a1a2 … aK is destined to output b1b2 … bK
- b1b2 … bK is used as the self-routing address (up link chosen if bk=0 and down
link if bk=1)
- packet visits first node a2…aK => travels along edge a2…aKb1 => visits node
a3…aKb1 =>…=> finally after visiting node b1…bn-1 arrives at output edge b1…bn
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Monotone and compact addresses

• Top-down numbering of nodes and links can be used also for other
self-routing networks having the unique property

• If self-routing addresses of packets at the inputs satisfy conditions:

• addresses are strictly monotone in the sense that destination
addresses are strictly increasing in top-down manner at the
inputs

• packets are compact in the sense that there is no idle input
between any two inputs with packets

=> self-routing paths used by these packets do not share any link
   within the shuffle exchange network

=> no need for buffering at inputs of the internal nodes
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Limitations of banyan networks

• Banyan network can realize exp2(½Nlog2N) = (NN)½ input-output
permutations (connection patterns)

• Full connectivity requires N! connection patterns
=> Banyan network is a blocking one

• Combinatorial power of banyan network can be increased
significantly by implementing
- multiple links between nodes
- duplicated switch
- appended switch with random routing (shuffle)
- buffering at intermediate nodes (=> undesirable random delay)


