Switch Fabrics

Switching Technology $\mathbf{S 3 8 . 1 6 5}$
http://www.netlab.hut.fi/opetus/s38165

Switch fabrics

- Basic concepts
- Time and space switching
- Two stage switches
- Three stage switches
- Cost criteria
- Multi-stage switches and path search

Cost criteria for switch fabrics

- Number of cross-points
- Fan-out
- Logical depth
- Blocking probability
- Complexity of switch control
- Total number of connection states
- Path search

Cross-points

- Number of cross-points gives the number of on-off gates (usually "and-gates") in space switching equivalent of a fabric
- minimization of cross-point count is essential when cross-point technology is expensive (e.g. electro-mechanical and optical cross-points)
- Very Large Scale Integration (VLSI) technology implements cross-point complexity in Integrated Circuits (ICs) => more relevant to minimize number of ICs than number of cross-points
- Due to increasing switching speeds, large fabric constructions and increased integration density of ICs, power consumption has become a crucial design criteria
- higher speed => more power
- large fabrics => long buses, fan-out problem and more driving power - increased integration degree of ICs => heating problem

Fan-out and logical depth

- VLSI chips can hide cross-point complexity, but introduce pin count and fan-out problem
- length of interconnections between ICs can be long lowering switching speed and increasing power consumption
- parallel processing of switched signals may be limited by the number of available pins of ICs
- fan-out gives the driving capacity of a switching gate, i.e. number of inputs (gates/cross-points) that can be connected to an output
- long buses connecting cross-points may lower the number of gates that can be connected to a bus
- Logical depth gives the number of cross-points a signal traverses on its way through a switch
- large logical depth causes excessive delay and signal deterioration
© P. Raatikainen Switching Technology / 2003 4-5

Blocking probability

- Blocking probability of a multi-stage switching network difficult to determine
- Lee's approximation gives a coarse measure of blocking
- Assume uniformly distributed load
- equal load in each input
- load distributed uniformly among intermediate stages (and their outputs) and among outputs of the switch
- Probability that an input is engaged is $a=\lambda \boldsymbol{S}$ where
- $\boldsymbol{\lambda}=$ input rate on an input link

- S = average holding time of a link

Blocking probability (cont.)

- Under the assumption of uniformly distributed load, probability that a path between any two switching blocks is engaged is $p=a n / k(k \geq n)$
- Probability that a certain path from an input block to an output block is engaged is $\mathbf{1 - (1 - p})^{2}$ where the last term is the probability that both (input and output) links are disengaged
- Probability that all k paths between an input switching block and an output switching block are engaged is

$$
B=\left[1-(1-a n / k)^{2}\right]^{k}
$$

which is known as Lee's approximation

Control complexity

- Give a graph \boldsymbol{G}, a control algorithm is needed to find and set up paths in \boldsymbol{G} to fulfill connection requirements
- Control complexity is defined by the hardware (computation and memory) requirements and the run time of the algorithm
- Amount of computation depends on blocking category and degree of blocking tolerated
- In general, computation complexity grows exponentially as a function of the number of terminal
- There are interconnection networks that have a regular structure for which control complexity is substantially reduced
- There are also structures that can be distributed over a large number of control units

Management complexity

- Network management involves adaptation and maintenance of a switching network after the switching system has been put in place
- Network management deals with
- failure events and growth in connectivity demand
- changes of traffic patterns from day to day
- overload situations
- diagnosis of hardware failures in switching system, control system as well as in access and trunk network
- in case of failure, traffic is rerouted through redundant built-in hardware or via other switching facilities
- diagnosis and failure maintenance constitute a significant part of software of a switching system
- In order for switching cost to grow linearly in respect to total traffic, switching functions (such as control, maintenance, call processing and interconnection network) should be as modular as possible
© P. Raatikainen Switching Technology / 2003 4-9

Example 1

- A switch with
- a capacity of N simultaneous calls
- average occupancy on lines during busy hour is \boldsymbol{X} Erlangs
- $\boldsymbol{Y} \%$ requirement for internal use
- notice that two (one-way) connections are needed for a call
requires a switch fabric with $\boldsymbol{M}=2 \times[(100+\boldsymbol{Y}) / 100] \times(\boldsymbol{N} / \boldsymbol{X})$ inputs and outputs.
- If $N=20000, X=0.72$ and $Y=10 \%$
=> $M=2 \times 1.1 \times 20000 / 0.72=61112$
=> corresponds to 2038 E1 links

Amount of traffic in Erlangs

- Erlang defines the amount of traffic flowing through a communication system - it is given as the aggregate holding time of all channels of a system divided by the observation time period
- Example 1 :
- During an hour period three calls are made ($5 \mathrm{~min}, 15 \mathrm{~min}$ and 10 min) using a single telephone channel $=>$ the amount of traffic carried by this channel is $(30 \mathrm{~min} / 60 \mathrm{~min})=0.5$ Erlang
- Example 2:
- a telephone exchange supports 1000 channels and during a busy hour (10.00-11.00) each channel is occupied 45 minutes on the average => the amount of traffic carried through the switch during the busy hour is $(1000 \times 45 \mathrm{~min} / 60 \mathrm{~min})=75$ Erlangs

Erlang's first formula

Erlang 1st formula

$$
E_{1}(n, A)=\frac{\frac{A^{n}}{n!}}{1+A+\frac{A^{2}}{2!}+\cdots+\frac{A^{n}}{n!}}
$$

- Erlang 1st formula applies to systems fulfilling conditions
- a failed call is disconnected (loss system)
- full accessibility
- time between subsequent calls vary randomly
- large number of sources
- $E_{1}(5,2.7)$ implies that we have a system of 5 inlets and offered load is 2.7 Erlangs - blocking calculated using the formula is 8.5%
- Tables and diagrams (based on Erlang's formula) have been produced to simplify blocking calculations

Example 2

- An exchange for 2000 subscribers is to be installed and it is required that the blocking probability should be below 10%. If E2 links are used to carry the subscriber traffic to telephone network, how many E2 links are needed?
- average call lasts 6 min
- a subscriber places one call during a 2-hour busy period (on the average)
- Amount of offered traffic is $(2000 \times 6 \mathrm{~min} / 2 \times 60 \mathrm{~min})=100 \mathrm{Erl}$.
- Erlang 1st formula gives for 10 \% blocking and load of 100 Erl. that $n=97$
=> required number of E1 links is ceil $(97 / 30)=4$

Example 3

- Suppose driving current of a switching gate (cross-point) is 100 mA and its maximum input current is 8 mA
- How many output gates can be connected to a bus, driven by one input gate, if the capacitive load of the bus is negligibly small?
- Fan-out = floor[100/8] = 12
- How many output gates can be connected to a bus driven by one input gate if load of
 the bus corresponds to 15% of the load of a gate input) ?
- Fan-out = floor[100/(1.15x8)] = 10

Switch fabrics

- Basic concepts
- Time and space switching
- Two stage switches
- Three stage switches
- Cost criteria
- Multi-stage switches and path search

Multi-stage switching

- Large switch fabrics could be constructed by using a single $N \times N$ crossbar, interconnecting N inputs to N outputs
- such an array would require N^{2} cross-points
- logical depth = 1
- considering the limited driving power of electronic or optical switching gates, large N means problems with signal quality (e.g. delay, deterioration)
- Multi-stage structures can be used to avoid above problems
- Major design problems with multi-stages
- find a non-blocking structure
- find non-conflicting paths through the switching network

Multi-stage switching (cont.)

- Let's take a network of K stages
- Stage $k(1 \leq k \leq K)$ has r_{k} switch blocks (SB)
- Switch block $j\left(1 \leq j \leq r_{k}\right)$ in stage k is denoted by $S(j, k)$
- Switch j has m_{k} inputs and n_{k} outputs
- Input i of $S(j, k)$ is represented by $e(i, j, k)$
- Output i of $S(j, k)$ is represented by $o(i, j, k)$
- Relation $o(i, j, k)=e\left(i^{\prime}, j, k+1\right)$ gives interconnection between output i and input i ' of switch blocks j and j ' in consecutive stages k and $k+1$
- Special class of switches:
- $n_{k}=r_{k+1}$ and $m_{k}=r_{k-1}$
- each SB in each stage connected to each SB in the next stage

Clos network

```
m
n
rk}=\mathrm{ number of SBs at stage k
```

- parameter $m_{1}, n_{3}, r_{1}, r_{2}, r_{3}$
chosen freely
- other parameters determined
uniquely by $n_{1}=r_{2}, m_{2}=r_{1}$,
$n_{2}=r_{3}, m_{3}=r_{2}$

Graph presentation of a Clos network

Every SB in stage \boldsymbol{k} is connected to all $\boldsymbol{r}_{\boldsymbol{k}+1}$ SBs in the following stage $k+1$ with a single link.

Path connections in a 3-stage network

- An input of SB \boldsymbol{x} may be connected to an output of SB \boldsymbol{y} via a middle stage SB a
- Other inputs of SB \boldsymbol{x} may be connected to other outputs of SB \boldsymbol{y} via other middle stage SBs (b, c, ...)
- Paull's connection matrix is used to represent paths in three stage switches

Paull's matrix

- Middle stage switch blocks (a, b, c) connecting 1st stage SB \boldsymbol{x} to 3rd stage SB \boldsymbol{y} are entered into entry $(\boldsymbol{x}, \boldsymbol{y})$ in $r_{1} \times r_{3}$ matrix
- Each entry of the matrix may have 0,1 or several middle stage SBs
- A symbol (a,b,..) appears as many times in the matrix as there are connections through it

Paull's matrix (cont.)

Conditions for a legitimate point-to-point connection matrix:

1 Each row has at most m_{1} symbols, since there can be as many paths through a 1st stage SB as there are inputs to it

2 Each column has at most n_{3} symbols, since there can be as many paths through a 3rd stage SB as there are outputs from it

Paull's matrix (cont.)

Conditions of a legitimate point-to-point connection matrix (cont.):

3 Symbols in each row must be distinct, since only one edge connects a 1st stage SB to a 2nd stage SB
$=>$ there can be at most r_{2} different symbols
4 Symbols in each column must be distinct, since only one edge connects a 2nd stage SB to a 3rd stage SB and an edge does not carry signals from several inputs
$=>$ there can be at most r_{2} different symbols
In case of multi-casting, conditions 1 and 3 may not be valid, because a path from the 1st stage may be directed via several 2nd stage switch blocks. Conditions 2 and 4 remain valid.

Strict-sense non-blocking Clos

Definitions:

- T^{\prime} is a subset of set T of transmitting terminals
- R^{\prime} is a subset of set R of receiving terminals
- Each element of T^{\prime} is connected by a legitimate multi-cast tree to a non-empty and disjoint subset R^{\prime}
- Each element of R^{\prime} is connected to one element of T,

A network is strict sense non-blocking if any $t \in T$ - T^{\prime} can establish a legitimate multi-cast tree to any subset $R-R$ ' without changes to the previously established paths.
A rearrangeable network satisfies the same conditions, but allows changes to be made to the previously established paths.

Clos theorem

Clos theorem:

A Clos network is strict-sense non-blocking if and only if the number of 2 nd stage switch blocks fulfills the condition

$$
r_{2} \geq m_{1}+n_{3}-1
$$

- A symmetric Clos network with $m_{1}=n_{3}=n$ is strict-sense nonblocking if

$$
r_{2} \geq 2 n-1
$$

Proof of Clos theorem

Proof 1:

- Let's take some SB \boldsymbol{x} in the 1st stage and some SB \boldsymbol{y} in the 3rd stage, which both have maximum number of connection minus one.
$=>\boldsymbol{x}$ has $m_{1}-1$ and \boldsymbol{y} has $n_{3}-1$ connections
- One additional connection should be established between \boldsymbol{x} and \boldsymbol{y}
- In the worst case, existing connections of \boldsymbol{x} and \boldsymbol{y} occupy distinct 2nd stage SBs $\Rightarrow m_{1}-1$ SBs for paths of \boldsymbol{x} has and $n_{3}-1$ SBs for paths of \boldsymbol{y}
- To have a connection between \boldsymbol{x} and \boldsymbol{y} an additional SB is needed in the 2nd stage $\Rightarrow>$ required number of SBs is $\left(m_{1}-1\right)+\left(n_{3}-1\right)+1=m_{1}+n_{3}-1$

Visualization of proof

Paull's matrix and proof of Clos theorem

Proof 2:

- A connection from an idle input of a 1st stage SB \boldsymbol{x} to an idle output of a 3rd stage SB \boldsymbol{y} should be established
- $m_{1}-1$ symbols can exist already in row \boldsymbol{x}, because there are m_{1} inputs to SB \boldsymbol{x}.
- $n_{3}-1$ symbols can exist already in row \boldsymbol{y}, because there are n_{3} outputs to SB \boldsymbol{y}.
- In the worst case, all the ($m_{1}-1+n_{3}-1$) symbol are distinct
- To have an additional path between \boldsymbol{x} and \boldsymbol{y}, one more SB is needed in the 2nd stage
$\Rightarrow m_{1}+n_{3}-1$ SBs are needed

Procedure for making connections

- Keep track of symbols used by row \boldsymbol{x} using an occupancy vector $\underline{\boldsymbol{u}}_{\boldsymbol{x}}$ (which has \boldsymbol{r}_{2} entries that represent SBs of the 2nd stage)
- Enter " 1 " for a symbol in $\underline{\boldsymbol{u}}_{\boldsymbol{x}}$ if it has been used in row \boldsymbol{x}, otherwise enter "0"
- Likewise keep track of symbols used by column \boldsymbol{y} using an occupancy vector $\underline{u}_{\boldsymbol{y}}$
- To set up a connection between SB \boldsymbol{x} and SB \boldsymbol{y} look for a position \boldsymbol{j} in $\underline{\boldsymbol{u}}_{\boldsymbol{x}}$ and $\underline{\boldsymbol{u}}_{\boldsymbol{y}}$ which has " 0 " in both vectors
- Amount of required computation is proportional to $\boldsymbol{r}_{\mathbf{2}}$

Rearrangeable networks

Slepian-Duguid theorem:

A three stage network is rearrangeable if and only if

$$
r_{2} \geq \max \left(m_{1}, n_{3}\right)
$$

A symmetric Clos network with $m_{1}=n_{3}=n$ is rearrangeably nonblocking if

$$
r_{2} \geq n
$$

Paull's theorem:

The number of circuits that need to be rearranged is at most

$$
\min \left(r_{1}, r_{3}\right)-1
$$

Connection rearrangement by Paull's matrix

- If there is no common symbol (position J) found in $\underline{\boldsymbol{u}}_{x}$ and $\underline{\boldsymbol{u}}_{y}$, we look for symbols in $\underline{\boldsymbol{u}}_{\boldsymbol{x}}$ that are not in $\underline{\boldsymbol{u}}_{\boldsymbol{y}}$ and symbols in $\underline{\boldsymbol{u}}_{\boldsymbol{y}}$ not found in $\underline{\boldsymbol{u}}_{\boldsymbol{x}}$ => a new connection can be set up only by rearrangement
- Let's suppose there is symbol \boldsymbol{a} in $\underline{\boldsymbol{u}}_{\boldsymbol{x}}\left(\right.$ not in $\left.\underline{\boldsymbol{u}}_{\boldsymbol{y}}\right)$ and symbol \boldsymbol{b} in $\underline{\boldsymbol{u}}_{\boldsymbol{y}}$ (not in $\underline{\boldsymbol{u}}_{x}$) and let's choose either one as a starting point
- Let it be \boldsymbol{a} then \boldsymbol{b} is searched from the column in which \boldsymbol{a} resides (in row \boldsymbol{x}) - let it be column $\boldsymbol{j}_{\boldsymbol{1}}$ in which \boldsymbol{b} is found in row $\boldsymbol{i}_{\boldsymbol{1}}$
- In row \boldsymbol{i}_{1} search for \boldsymbol{a} - let this position be column $\boldsymbol{j}_{2} n$
- This procedure continues until symbol \boldsymbol{a} or \boldsymbol{b} cannot be found in the column or row visited

$\underline{U}_{\boldsymbol{y}}$	1	1	1	0	1	1
	1	2	a	b		r_{2}

Connection rearrangement by Paull's matrix (cont.)

- At this point connections identified can be rearranged by replacing symbol \boldsymbol{a} (in rows $\boldsymbol{x}, \boldsymbol{i}_{1}, \boldsymbol{i}_{2}, \ldots$) by \boldsymbol{b} and symbol \boldsymbol{b} (in columns $\boldsymbol{y}, \boldsymbol{j}_{1}$, j_{2}, \ldots) by a
- \boldsymbol{a} and \boldsymbol{b} still appear at most once in any row or column
- 2nd stage SB \boldsymbol{a} can be used to connect \boldsymbol{x} and \boldsymbol{y}

Example of connection rearrangement by Paull's matrix

- Let's take a three-stage network 24×25 with $r_{1}=4$ and $r_{3}=5$
- Rearrangeability condition requires that $r_{2}=6$
- let these SBs be marked by a, b, c, d, e and f
$\Rightarrow m_{1}=6, n_{1}=6, m_{2}=4, n_{2}=5, m_{3}=6, n_{3}=5$

Example of connection rearrangement by Paull's matrix (cont.)

- In the network state shown below, a new connection is to be established between SB1 of stage 1 and SB1 of stage 3
- No SBs available in stage 2 to allow a new connection
- Slepian-Duguid theorem => a three stage network is rearrangeable if and only if $r_{2} \geq \max \left(m_{1}, n_{3}\right)$
- $m_{1}=6, n_{3}=5, r_{2}=6$ c> condition fulfilled
- SBs \boldsymbol{c} and \boldsymbol{d} are selected to operate rearrangement

Occupancy vectors of SB1/stage 1 and SB1/stage 3

$$
\begin{aligned}
& \begin{array}{l|l|l|l|l|l|l|}
\boldsymbol{U}_{1-1} & \mathrm{l} & 1 & 1 & 0 & 1 & 1 \\
\hline & \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{~d} & \mathrm{e} & \mathrm{f}
\end{array} \\
& \begin{array}{cc|c|c|c|c|c|}
\hline \boldsymbol{u}_{3-1} & 1 & 1 & 0 & 1 & 0 & 0 \\
\hline & a & b & c & d & e & f
\end{array}
\end{aligned}
$$

Example of connection rearrangement by Paull's matrix (cont.)

- Start rearrangement procedure from symbol \boldsymbol{c} in row 1 and column 5
- 5 connection rearrangements are needed to set up the required connection - Paull's theorem !!!

Example of connection rearrangement by Paull's matrix (cont.)

- Paull's theorem states that the number of circuits that need to be rearranged is at most $\min \left(r_{1}, r_{3}\right)-1=3$
=> there must be another solution
- Start rearrangement procedure from din row 4 and column 1 => only one connection rearrangement is needed

Recursive construction of switching networks

- To reduce cross-point complexity of three stage switches individual stages can be factored further
- Suppose we want to construct an $N x N$ switching network and let $N=p \times q$
- A rearrangeably non-blocking Clos network is constructed recursively by connecting a $p \times p, q \times q$ and $p \times p$ rearrangeably nonblocking switch together in respective order
=> under certain conditions result may be a strict-sense nonblocking network
- A strict-sense non-blocking network is constructed recursively by connecting a $p(2 p-1), q \times q$ and $p(2 p-1)$ strict-sense non-blocking switch together in respective order
=> result may be a rearrangeable non-blocking network

3-dimensional construction of a rearrangeably non-blocking network

Number of cross-points for the rearrangable construction is

$$
p^{2} q+q^{2} p+p^{2} q=2 p^{2} q+q^{2} p
$$

3-dimensional construction of a strictsense non-blocking network

Number of cross-points for the strictly non-blocking construction is $p(2 p-1) q+q^{2}(2 p-1)+p(2 p-1) q=2 p(2 p-1) q+q^{2}(2 p-1)$

Recursive factoring of switching networks

- N can be factored into p and q in many ways and these can be factored further
- Which p to choose and how should the sub-networks be factored further?
- Doubling in the 1st and 3rd stages suggests to start with the smallest factor and recursively factor $q=N / p$ using the next smallest factor => this strategy works well for rearrangeable networks => for strict-sense non-blocking networks width of the network is doubled
=> not the best strategy for minimizing cross-point count
- Ideal solution: low complexity, minimum number of cross-points and easy to construct => quite often conflicting goals

Recursive factoring of a rearrangeably non-blocking network

- Special case $N=2^{n}, n$ being a positive integer
=> a rearrangeable network can be constructed by factoring N into $p=2$ and $q=N / 2$
=> resulting network is a Benes network
=> each stage consists of $N / 2$ switch blocks of size 2×2
- Factor q relates to the multiplexing factor (number of time-slots on inputs) => recursion continued until speed of signals low enough for real implementations

Benes network

Number of stages in a Benes network

$$
K=2 \log _{2} N-1
$$

Benes network (cont.)

- Benes network is recursively constructed of 2×2 switch blocks and it is rearrangeably non-blocking (see Clos theorem)
- First half of Benes network is called baseline network
- Second half of Benes network is a mirror image (inverse) of the first half and is called inverse baseline network
- Number of switch stages is $K=\mathbf{1 0 g}_{2} \mathbf{N}$ - $\mathbf{1}$
- Each stage includes $N / 22 \times 2$ switching blocks (SBs) and thus number of SBs of a Benes network is

$$
N \log _{2} N-(N / 2)=N\left(\log _{2} N-1 / 2\right)
$$

- Each $2 x 2$ SB has 4 cross-points and number of cross-points in a Benes network is

$$
4(N / 2)\left(2 \log _{2} N-1\right)=4 \operatorname{Nlog}_{2} N-2 N \sim \quad 4 \operatorname{Nlog}_{2} N
$$

Illustration of recursively factored Benes network

