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Switch Fabrics

Switching Technology S38.165
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Switch fabrics

• Basic concepts
• Time and space switching

• Two stage switches
• Three stage switches
• Cost criteria
• Multi-stage switches and path search
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Cost criteria for switch fabrics

• Number of cross-points
• Fan-out
• Log ical depth
• Blocking p robabili ty
• Complexity of swi tch control
• Total number of conn ection states
• Path search
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Cross-points

• Number of cross-points gives the number of on-off gates
(usually “ and-gates” ) in space switching equivalent of a fabric

• minimization of cross-point count is essential when cross-point
technology is expensive (e.g. electro-mechanical and optical
cross-points)

• Very Large Scale Integration (VLSI) technology implements
cross-point complexity in Integrated Circuits (ICs)
=> more relevant to minimize number of ICs than number of
cross-points

• Due to increasing switching speeds, large fabric constructions
and increased integration density of ICs, power consumption has
become a crucial design criteria
- higher speed => more power
- large fabrics => long buses, fan-out problem and more driving power
- increased integration degree of ICs => heating problem
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Fan-out and logical depth

• VLSI chips can hide cross-point complexity, but introduce
pin count and fan-out problem

• length of interconnections between ICs can be long lowering
switching speed and increasing power consumption

• parallel processing of switched signals may be limited by the
number of available pins of ICs

• fan-out gives the driving capacity of a switching gate, i.e. number
of inputs (gates/cross-points) that can be connected to an output

• long buses connecting cross-points may lower the number of gates
that can be connected to a bus

• Logical depth gives the number of cross-points a signal
traverses on its way through a switch

• large logical depth causes excessive delay and signal deterioration
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Blocking probability

• Blocking probability of a multi-stage switching network
difficult to determine

• Lee’s approximation gives a coarse measure of blocking
• Assume uniformly distributed load

• equal load in each input
• load distributed uniformly among

intermediate stages (and their
outputs) and among outputs
of the switch

• Probability that an input is
engaged is  a = = λλS  where
- λ = input rate on an input link
- S = average holding time of a link
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Blocking probability (cont.)

• Under the assumption of uniformly distributed load,
probability that a path between any two switching blocks
is engaged is  p = an/k (k≥≥n)

• Probability that a certain path from an input block to an
output block is engaged is  1 - (1-p)2  where the last term is
the probability that both (input and output) links are
disengaged

• Probability that all k paths between an input switching
block and an output switching block are engaged is

 B = [1 - (1- an/k )2 ]k

which is known as Lee’s approximation
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Control complexity

• Give a graph G , a control algorithm is needed to find and set up
paths in G to fulfill connection requirements

• Control complexity is defined by the hardware (computation and
memory) requirements and the run time of the algorithm

• Amount of computation depends on blocking category and degree of
blocking tolerated

• In general, computation complexity grows exponentially as a function
of the number of terminal

• There are interconnection networks that have a regular structure for
which control complexity is substantially reduced

• There are also structures that can be distributed over a large number
of control units
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Management complexity

• Network management involves adaptation and maintenance of a
switching network after the switching system has been put in place

• Network management deals with
• failure events and growth in connectivity demand
• changes of traffic patterns from day to day
• overload situations
• diagnosis of hardware failures in switching system, control system

as well as in access and trunk network
- in case of failure, traffic is rerouted through redundant built-in
hardware or via other switching facilities
- diagnosis and failure maintenance constitute a significant part of
software of a switching system

• In order for switching cost to grow linearly in respect to total traffic,
switching functions (such as control, maintenance, call processing and
interconnection network) should be as modular as possible
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Example 1

• A  switch with
• a capacity of N simultaneous calls

• average occupancy on lines during busy hour is X  Erlangs
• Y % requirement for internal use
• notice that two (one-way) connections are needed for a call

requires a switch fabric with M = 2 x [(100+Y)/100] x(N/X) inputs
and outputs.

• If  N = 20 000, X = 0.72 and Y = 10%

=> M = 2 x 1.1 x 20 000/0.72 = 61 112
=> corresponds to 2038 E1 links 1

2

M

1
2

M
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Amount of traff ic in Erlangs

• Erlang defines the amount of traffic flowing through a
communication system - it is given as the aggregate holding time of
all channels of a system divided by the observation time period

• Example 1:
- During an hour period three calls are made (5 min, 15 min and 10
min) using a single telephone channel => the amount of traffic
carried by this channel is (30 min/60 min) = 0.5 Erlang

• Example 2:
- a telephone exchange supports 1000 channels and during a busy
hour (10.00 - 11.00) each channel is occupied 45 minutes on the
average =>  the amount of traffic carried through the switch during
the busy hour is (1000x45 min / 60 min) =  75 Erlangs
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Erlang’s first formula

• Erlang 1st formula applies to systems fulfilling conditions
-  a failed call is disconnected (loss system)
-  full accessibility
-  time between subsequent calls vary randomly
-  large number of sources

• E1(5, 2.7) implies that we have a system of 5 inlets and offered
load is 2.7 Erlangs - blocking calculated using the formula is 8.5 %

• Tables and diagrams (based on Erlang’s formula) have been
produced to simplify blocking calculations
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Example 2

• An exchange for 2000 subscribers is to be installed and it is
required that the blocking probability should be below 10 %.
If E2 links are used to carry the subscriber traffic to
telephone network, how many E2 links are needed ?
- average call lasts 6 min
- a subscriber places one call during a 2-hour busy period
(on the average)

• Amount of offered traffic is (2000x6 min /2x60 min) = 100 Erl.

• Erlang 1st formula gives for 10 % blocking and load of 100 Erl.
that n = 97
=> required number of E1 links is ceil(97/30) = 4
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Example 3

• Suppose driving current of a switching gate (cross-point) is 100 mA
and its maximum input current is 8 mA

• How many output gates can be connected to a bus, driven by one
input gate, if the capacitive load of the bus is negligibly small ?

• Fan-out =  floor[100/8] =  12 c

c c c

1
… 

2 M
• How many output gates can be connected

to a bus driven by one input gate if load of
the bus corresponds to 15 % of the load of
a gate input) ?

• Fan-out = floor[100/(1.15x8)] = 10
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Switch fabrics

• Basic concepts
• Time and space switching

• Two stage switches
• Three stage switches
• Cost criteria

• Multi-stage switches and path search
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Multi-stage switching

• Large switch fabrics could be constructed by using a
single NxN crossbar, interconnecting N inputs to N
outputs
-  such an array would require N2 cross-points
-  logical depth = 1
-  considering the limited driving power of electronic or optical
switching gates, large N means problems with signal quality (e.g.
delay, deterioration)

• Multi-stage structures can be used to avoid above
problems

• Major design problems with multi-stages
-  find a non-blocking structure
-  find non-conflicting paths through the switching network



9

4 - 17©  P. Raatikainen Switching Technology  / 2003

Multi-stage switching (cont.)

• Let’s take a network of K stages
• Stage k (1≤k≤K) has rk switch blocks (SB)
• Switch block j (1≤j≤ rk) in stage k is denoted by S(j,k)
• Switch j has mk inputs and nk outputs
• Input i of S(j,k) is represented by e(i,j,k)
• Output i of S(j,k) is represented by o(i,j,k)
• Relation o(i,j,k)= e(i’,j’,k+1) gives interconnection between output i

and input i’ of switch blocks j and j’ in consecutive stages k and k+1
• Special class of switches:

• nk = rk+1 and mk = rk-1

• each SB in each stage connected to each SB in the next stage
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Clos network

• parameter  m1, n3, r1, r2, r3

chosen freely
• other parameters determined

uniquely by n1 = r2, m2 = r1,
n2 = r3, m3 = r2

mk =  number of inputs in a SB at stage k
nk =  number of outputs in a SB at stage k
rk =  number of SBs at stage k

SB = Switch Block

m1 = 3

n1 = r2 = 5

m2 = r1 = 3 n2 = r3 = 4 m3 = r2 = 5

r1 = 3

r3 = 4r2 = 5

n3 = 2
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Graph presentation of a Clos network

n3 = 2

r1 = 3

r2 = 5
r3 = 4

n1 = r2 = 5

m2 = r1 = 3 n2 = r3 = 4
m3 = r2 = 5

m1 = 3

Every SB in stage k is connected to all rk+1 SBs in the following
stage k+1 with a single link.

1
2
3
4

1
2
3
4

4x4 switch
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Path connections in a 3-stage network

1ST STAGE
SBs

SB  a

2ND STAGE
SBs

3RD STAGE
SBs

SB  b

SB  c

SB  x SB  y

• An input of SB x may be connected to an output of SB y via a
middle stage SB a

• Other inputs of SB x may be connected to other outputs of SB y
via other middle stage SBs (b, c, …)

• Paull’s connection matrix is used
to represent paths in three
stage switches
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Paull’s matrix

a, b, c 

r3y1 2 .  .  . .  .  .
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Stage 3 swi tch blocks

• Middle stage switch blocks (a, b, c) connecting 1st stage SB x to
3rd stage SB y are entered into entry (x,y) in r1 x r3 matrix

• Each entry of the matrix may have 0, 1 or several middle stage SBs
• A symbol (a,b,..) appears as many times in the matrix as there are

connections through it
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Paull’s matrix (cont.)

Conditions for a legitimate point-to-point connection
matrix:

1 Each row has at most m1 symbols, since there can be as many
paths through a 1st stage SB  as there are inputs to it

Columns

At most  min(m1, r2) 
symbols in row  x

r3y1 2 .  .  . .  .  .

1

2

.  .  .

x

r1

.  .  .

At most  min(n3, r2) 
distinct symbols in 
row  y

R
o

w
s

2 Each column has at most n3 symbols, since there can be as
many paths through a 3rd stage SB  as there are outputs from it
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Paull’s matrix (cont.)

Conditions of a legitimate point-to-point connection
matrix (cont.):

In case of multi-casting, conditions 1 and 3 may not be valid,
because a path from the 1st stage may be directed via several
2nd stage switch blocks. Conditions 2 and 4 remain valid.

3 Symbols in each row must be distinct, since only one edge
connects a 1st stage SB to a 2nd stage  SB
=> there can be at most r2  different symbols

4 Symbols in each column must be distinct, since only one edge
connects a 2nd stage SB to a 3rd stage SB and an edge does
not carry signals from several inputs
 => there can be at most r2  different symbols
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Strict-sense non-blocking Clos

A network is strict sense non-blocking if any t ∈T- T’ can establish
a legitimate multi-cast tree to any subset R - R’ without changes to
the previously established paths.

A rearrangeable network satisfies the same conditions, but allows
changes to be made to the previously established paths.

• T’ is a subset of set T of transmitting terminals

• R’ is a subset of set R of receiving terminals

• Each element of T’ is connected by a legitimate multi-cast tree to
a non-empty and disjoint subset R’

• Each element of R’ is connected to one element of T’

Definitions:
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Clos theorem

A Clos network is strict-sense non-blocking if and only if the
number of 2nd stage switch blocks fulfills the condition

r2 ≥ m1 + n3 - 1

r2 ≥ 2n - 1

Clos theorem:

• A symmetric Clos network with m1 = n3 = n is strict-sense non-
blocking  if
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Proof of Clos theorem

• Let’s take some SB x  in the 1st stage and some SB y in the 3rd
stage, which both have maximum number of connection minus one.
=>  x has m1 -1 and y has n3 -1 connections

• One additional connection should be established between x and y

• In the worst case, existing connections of x and y occupy distinct
2nd stage SBs
=> m1 -1 SBs for paths of x has and n3 -1 SBs for paths of y

• To have a connection between x and y an additional SB is needed
in the 2nd stage
=> required number of SBs is (m1 -1) + (n3 -1) + 1 = m1 + n3 -1

Proof 1:
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Visualization of proof

y

x

m1-1

2

1

...

n3-1

2

1

...

1

n1

1

m3
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Paull’s matrix and proof of Clos theorem

• A connection from an idle input of a 1st stage SB x to an idle
output of a 3rd stage SB y should be established

• m1-1 symbols can exist already in row x, because there are m1

inputs to SB x.

• n3-1 symbols can exist already in row y, because there are n3

outputs to SB y.

• In the worst case, all the (m1-1 + n3-1) symbol are distinct

• To have an additional path between x and y, one more SB is
needed in the 2nd stage
=> m1 + n3 -1  SBs are needed

Proof 2:
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Procedure for making connections

• Keep track of symbols used by row x using an occupancy vector ux
(which has r2 entries that represent SBs of the 2nd stage)

• Enter “1” for a symbol in ux if it has been used in row x, otherwise
enter “0”

• Likewise keep track of symbols used by column y using an
occupancy vector uy

• To set up a connection between SB x and SB y look for a position j
in ux and uy which has “0” in both vectors

• Amount of required computation
is proportional to r2

ux 0 1 1 0 0 1

1 2 3 j r2

1 1 0 0 1 0

1 2 3 j r2

uy

common “ 0”
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Rearrangeable networks

A three stage network is rearrangeable if and only if

r2 ≥ max(m1, n3)

Slepian-Dugu id theorem:

A symmetric Clos network with m1 = n3 = n is rearrangeably non-
blocking if

r2 ≥ n

Paull ’s theorem:

The number of circuits that need to be rearranged is at most

min(r1, r3) -1
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Connection rearrangement by
Paull’s matrix

• If there is no common symbol (position j) found in  ux and uy, we look
for symbols in ux that are not in uy  and symbols in uy not found in ux

=> a new connection can be set up only by rearrangement

• Let’s suppose there is symbol a in ux (not in uy) and symbol b in uy
(not in ux) and let’s choose either one as a starting point

• Let it be a  then b is searched from the column in which a resides (in
row x) - let it be column j1 in which b is found in row i1

• In row i1 search for a - let this position be column j2 n

• This procedure continues until symbol a or b cannot be found in the
column or row visited

1 1 0 1 1

1 2 b r2

uy 1

a

ux 1 1 0 1 1

1 2 a r2

1

b
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Connection rearrangement by  Paull’s
matrix (cont.)

• At this point connections identified can be rearranged by replacing
symbol a (in rows x, i1, i2, ...) by b and symbol b (in columns y, j1,
j2, ...) by a

• a and b still appear at most once in any row or column
• 2nd stage SB a can be used to connect x and y

r3

b

1 j1

1

a

r1

y j3 j2

i1

x

i2 a

b

b a

r31 j1

1

r1

y j3 j2

i1

x

i2
b

a

b

b

a b

a
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Example of connection rearrangement
by Paull’s matrix

• Let’s take a three-stage network 24x25 with r1=4 and r3=5
• Rearrangeability condition requires that r2=6

- let these SBs be marked by  a, b, c, d, e  and f

=> m1 = 6, n1 = 6, m2 = 4, n2 = 5, m3 = 6, n3 = 5

1

2

4

1(a)

2(b)

6(f)

6x6 4x5

1

2

5

6x5
1
2

6

1
2

6

1
2

6

1
2

5

1
2

5

1
2

5

…
 

…
 

…
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Example of connection rearrangement
by Paull’s matrix (cont.)

1s
t 

st
ag

e 
S

B
s

1 2

1

2

3

4

3 4 5

3rd stage SBs

f a b,e c

a,b

e,f

b,fd c

d

d

a

c

c

• In the network state shown below, a new connection is to be
established between SB1 of stage 1 and SB1 of stage 3

• No SBs available in stage 2 to allow a new connection
• Slepian-Duguid theorem => a three stage network is rearrangeable

if and only if r2 ≥ max(m1, n3)
-  m1 = 6, n3 = 5, r2 = 6   => condition fulfilled

• SBs c and d are selected to operate rearrangement

u1-1

u3-1

1 1 1 10

a b c

1

d e f

1 1 0 01

a b c

0

d e f

Occupancy vec tors of SB1/stage 1
and SB1/stage 3
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Example of connection rearrangement
by Paull’s matrix (cont.)

1s
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st
ag

e 
S

B
s

1 2

1

2

3

4

3 4 5
3rd stage SBs

c,f a b,e d

a,b

e,f

b,fd c

c

c

a

d

d

• Start rearrangement procedure from symbol c in row 1 and
column 5

• 5 connection rearrangements are needed to set up the required
connection - Paull’s theorem !!!
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3 4 5
3rd stage SBs

f a b,e c

a,b

e,f

b,fd c
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d
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c

c
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Example of connection rearrangement
by Paull’s matrix (cont.)
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3rd stage SBs

f a b,e c

a,b

e,f

b,fd c
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3rd stage SBs

c,f a b,e d

a,b

e,f

b,fc d

c

c

a

d

d

• Paull’s theorem states that the number of circuits that need to be
rearranged is at most min(r1, r3) -1 = 3
=> there must be another solution

• Start rearrangement procedure from d in row 4 and column 1
=> only one connection rearrangement is needed
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Recursive construction of switching
networks

• To reduce cross-point complexity of three stage switches individual
stages can be factored further

• Suppose we want to construct an NxN switching network and let
N = pxq

• A rearrangeably non-blocking Clos network is constructed
recursively by connecting a pxp, qxq and pxp rearrangeably non-
blocking switch together in respective order
=> under certain conditions result may be a strict-sense non-
blocking network

• A strict-sense non-blocking  network is constructed recursively by
connecting a p(2p - 1), qxq and p(2p - 1) strict-sense non-blocking
switch together in respective order
=> result may be a rearrangeable non-blocking network
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3-dimensional construction of a
rearrangeably non-blocking network

q  PLANES p  PLANES q   PLANES

qxq

pxp pxp

Number of cross-points for the rearrangable construction is

p2q + q2p + p2q = 2 p2q + q2p
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3-dimensional construction of a strict-
sense non-blocking network

px(2p-1)

q  PLANES p  PLANES

q   PLANES

qxq

(2p-1)xp

Number of cross-points for the strictly non-blocking construction is

p(2p - 1)q + q2 (2p - 1) + p (2p - 1)q = 2p(2p - 1) q + q2 (2p - 1) 
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Recursive factoring of switching
networks

• N can be factored into p and q in many ways and these can be
factored further

• Which p to choose and how should the sub-networks be factored
further ?

• Doubling in the 1st and 3rd stages suggests to start with the smallest
factor and recursively factor  q = N/p using the next smallest factor
=> this strategy works well for rearrangeable networks
=> for strict-sense non-blocking networks width of the network is
doubled
=> not the best strategy for minimizing cross-point count

• Ideal solution: low complexity, minimum number of cross-points and
easy to construct  => quite often conflicting goals
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Recursive factoring of a rearrangeably
non-blocking network

N
 IN

P
U

T
S

N
 O

U
T

P
U

T
S

N/2 x N/2
SWITCH

N/2 x N/2
SWITCH

• Special case N = 2n, n being a positive integer
=> a rearrangeable network can be constructed by factoring  N into
 p = 2 and q = N/2
=> resulting network is a Benes network
=> each stage consists of N/2 switch blocks of size 2x2

• Factor q relates to the multiplexing factor (number of time-slots on inputs)
=> recursion continued until speed of signals low enough for real
implementations
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Benes network

N
 IN

P
U

T
S

N
 O

U
T

P
U

T
S

Number of stages in a Benes network

K = 2log2N - 1

Baseline network Inverse baseline network
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Benes network (cont.)

• Benes network is recursively constructed of 2x2 switch blocks and it
is rearrangeably non-blocking (see Clos theorem)

• First half of Benes network is called baseline network

• Second half of Benes network is a mirror image (inverse) of the first
half and is called inverse baseline network

• Number of switch stages is  K = 2log2N - 1

• Each stage includes N/2 2x2 switching blocks (SBs) and thus
number of SBs of a Benes network is

Nlog2N - (N/2) = N(log2N - ½)

• Each 2x2 SB has 4 cross-points and number of cross-points in a
Benes network is

4(N/2)(2log2N-1) = 4Nlog2N - 2N ∼∼    4Nlog2N
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Illustration of recursively factored
Benes network
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