

Clos theorem	
Clos theorem:	
A Clos network is strict-sense non-blocking if and only if the number of 2nd stage switch blocks fulfills the condition	
$r_2 \ge m_1 + n_3 - 1$	
• A symmetric Clos network with $m_1 = n_3 = n$ is strict-sense nor blocking if $r_2 \ge 2n - 1$	ז-
 © P. Raatikainen Switching Technology / 2003	4 - 25

