Switch fabrics

- Basic concepts
- Time and space switching
- Two stage switches
- Three stage switches
- Cost criteria
- Multi-stage switches and path search
Switch fabrics

- Multi-point switching
- Self-routing networks
- Sorting networks
- Fabric implementation technologies
- Fault tolerance and reliability

Basic concepts

- Accessibility
- Blocking
- Complexity
- Scalability
- Reliability
- Throughput
Accessibility

- A network has **full accessibility** when each inlet can be connected to each outlet (in case there are no other I/O connections in the network)
- A network has a **limited accessibility** when the above given property does not exist
- Interconnection networks applied in today’s switch fabrics usually have full accessibility

Blocking

- Blocking is defined as failure to satisfy a connection requirement and it depends strongly on the combinatorial properties of the switching networks

<table>
<thead>
<tr>
<th>Network class</th>
<th>Network type</th>
<th>Network state</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-blocking</td>
<td>Strict-sense non-blocking</td>
<td>Without blocking states</td>
</tr>
<tr>
<td></td>
<td>Wide-sense non-blocking</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rearrangeably non-blocking</td>
<td></td>
</tr>
<tr>
<td>Blocking</td>
<td>Others</td>
<td>With blocking state</td>
</tr>
</tbody>
</table>
Blocking (cont.)

- **Non-blocking** - a path between an arbitrary idle inlet and arbitrary idle outlet can always be established independent of network state at set-up time
- **Blocking** - a path between an arbitrary idle inlet and arbitrary idle outlet cannot be established owing to internal congestion due to the already established connections
- **Strict-sense non-blocking** - a path can always be set up between any idle inlet and any idle outlet without disturbing paths already set up
- **Wide-sense non-blocking** - a path can be set up between any idle inlet and any idle outlet without disturbing existing connections, provided that certain rules are followed. These rules prevent network from entering a state for which new connections cannot be made
- **Rearrangeably non-blocking** - when establishing a path between an idle inlet and an idle outlet, paths of existing connections may have to be changed (rearranged) to set up that connection

Complexity

- Complexity of an interconnection network is expressed by **cost index**
- Traditional definition of cost index gives the **number of cross-points in a network**
 - used to be a reasonable measure of space division switching systems
- Nowadays cost index alone does not characterize cost of an interconnection network for broadband applications
 - VLSIs and their integration degree has changed the way how cost of a switch fabric is formed (number of ICs, power consumption)
 - management and control of a switching system has a significant contribution to cost
Scalability

- Due to constant increase of transport links and data rates on links, scalability of a switching system has become a key parameter in choosing a switch fabric architecture
- Scalability describes ability of a system to evolve with increasing requirements
- Issues that are usually matter of scalability
 - number of switching nodes
 - number of interconnection links between nodes
 - bandwidth of interconnection links and inlets/outlets
 - throughput of switch fabric
 - buffering requirements
 - number of inlets/outlets supported by switch fabric

Reliability

- Reliability and fault tolerance are system measures that have an impact on all functions of a switching system
- Reliability defines probability that a system does not fail within a given time interval provided that it functions correctly at the start of the interval
- Availability defines probability that a system will function at a given time instant
- Fault tolerance is the capability of a system to continue its intended function in spite of having a fault(s)
- Reliability measures:
 - MTTF (Mean Time To Failure)
 - MTTR (Mean Time To Repair)
 - MTB (Mean Time Between Failures)
Throughput

- Throughput gives forwarding/switching speed/efficiency of a switch fabric
- It is measured in bits/s, octets/s, cells/s, packet/s, etc.
- Quite often throughput is given in the range (0 ... 1.0], i.e., the obtained forwarding speed is normalized to the theoretical maximum throughput

Switch fabrics

- Basic concepts
- **Time and space switching**
 - Two stage switches
 - Three stage switches
 - Cost criteria
 - Multi-stage switches and path search
Switching mechanisms

- A switched connection requires a mechanism that attaches the right information streams to each other
- Switching takes place in the switching fabric, the structure of which depends on network’s mode of operation, available technology and required capacity
- Communicating terminals may use different physical links and different time-slots, so there is an obvious need to switch both in time and in space domain
- **Time and space** switching are basic functions of a switch fabric

Space division switching

- A space switch directs traffic from input links to output links
- An input may set up one connection (1, 3, 6 and 7), multiple connections (4) or no connection (2, 5 and 8)
Crossbar switch matrix

- Crossbar matrix introduces the basic structure of a space switch
- Information flows are controlled (switched) by opening and closing cross-points
- \(m \) inputs and \(n \) outputs \(\Rightarrow \) \(mn \) cross-points (connection points)
- Only one input can be connected to an output at a time, but an input can be connected to multiple outputs (multi-cast) at a time

![Crossbar switch matrix diagram]

An example space switch

- \(m \times 1 \) -multiplexer used to implement a space switch
- Every input is fed to every output mux and mux control signals are used to select which input signal is connected through each mux

![An example space switch diagram]
Time division multiplexing

- Time-slot interchanger is a device, which buffers incoming time-slots, e.g. 30 time-slots of an E1 frame, arranges new transmit order and transmits time-slots.
- Time-slots are stored in buffer memory usually in the order they arrive or in the order they leave the switch - additional control logic is needed to decide respective output order or the memory slot where an input slot is stored.

Time-slot interchange

- Diagram showing the arrangement of input and output time-slots and the buffer space for time-slots.
Time switch implementation example 1

- Incoming time-slots are written cyclically into switch memory
- Output logic reads cyclically control memory, which contains a pointer for each output time-slot
- Pointer indicates which input time-slot to insert into each output time-slot

Time switch implementation example 2

- Incoming time-slots are written into switch memory by using write-addresses read from control memory
- A write address points to an output slot to which the input slot is addressed
- Output time-slots are read cyclically from switch memory
Properties of time switches

- Input and output frame buffers are read and written at wire-speed, i.e. \(m \) R/Ws for input and \(n \) R/Ws for output
- Interchange buffer (switch memory) serves all inputs and outputs and thus it is read and written at the aggregate speed of all inputs and outputs
 \[=\text{ speed of an interchange buffer is a critical parameter in time switches and limits performance of a switch}\]
- Utilizing parallel to serial conversion memory speed requirement can be cut
- Speed requirement of control memory is half of that of switch memory (in fact a little more than that to allow new control data to be updated)

Time-Space analogy

- A time switch can be logically converted into a space switch by setting time-slot buffers into vertical position => time-slots can be considered to correspond to input/output links of a space switch
- But is this logical conversion fair?
Space-Space analogy

- A space switch carrying time multiplexed input and output signals can be logically converted into a pure space switch (without cyclic control) by distributing each time-slot into its own space switch.

Inputs and outputs are time multiplexed signals (K time-slots)

To switch a time-slot, it is enough to control one of the K boxes.

An example conversion

K multiplexed input signals on each link
Properties of space and time switches

Space switches
- number of cross-points (e.g. AND-gates)
 - \(m \) input x \(n \) output = \(mn \)
 - when \(m=n \) => \(n^2 \)
- output bit rate determines the speed requirement for the switch components
- both input and output lines deploy “bus” structure
 - => fault location difficult

Time switches
- size of switch memory (SM) and control memory (CM) grows linearly as long as memory speed is sufficient, i.e.
 - \(SM = 2 \times \) number of time-slots
 - \(CM = 2 \times \) number of time-slots
- a simple and cost effective structure when memory speed is sufficient
- speed of available memory determines the maximum switching capacity

Switch fabrics

- Basic concepts
- Time and space switching
- **Two stage switches**
- Three stage switches
- Cost criteria
- Multi-stage switches and path search
A switch fabric as a combination of space and time switches

- Two stage switches
 - Time-Time (TT) switch
 - Time-Space (TS) switch
 - Space-Time (SP) switch
 - Space-Apace (SS) switch

- TT-switch gives no advantage compared to a single stage T-switch
- SS-switch increases blocking probability

A switch fabric as a combination of space and time switches (cont.)

- ST-switch gives high blocking probability (S-switch can develop blocking on an arbitrary bus, e.g. slots from two different buses attempting to flow to a common output)
- TS-switch has low blocking probability, because T-switch allows rearrangement of time-slots so that S-switching can be done blocking free
Time multiplexed space (TMS) switch

- Space divided inputs and each of them carry a frame of three time-slots
- Input frames on each link are synchronized to the crossbar
- A switching plane for each time-slot to direct incoming slots to destined output links of the corresponding time-slot

Connection conflicts in a TMS switch

- Space divided inputs and each of them carry a frame of three time-slots
- Input frames on each link are synchronized to the crossbar
- A switching plane for each time-slot to direct incoming slots to destined output links of the corresponding time-slot

© P. Raatikainen Switching Technology / 2003
TS switch interconnecting TDM links

- Time division switching applied prior to space switching
- Incoming time-slots can always be rearranged such that output requests become conflict free for each slot of a frame, provided that the number of requests for each output is no more than the number of slots in a frame

SS equivalent of a TS-switch
Connections through SS-switch

Example connections:
- (1, 3, 1) => (2, 1, 2)
- (1, 4, 2) => (2, 3, 4)

Switch fabrics

- Basic concepts
- Time and space switching
- Two stage switches
- **Three stage switches**
- Cost criteria
- Multi-stage switches and path search
Three stage switches

- Basic TS-switch sufficient for switching time-slots onto addressed outputs, but slots can appear in any order in the output frame
- If a specific input slot is to carry data of a specific output slot then a time-slot interchanger is needed at each output
 => any time-slot on any input can be connected to any time-slot on any output
 => blocking probability minimized
- Such a 3-stage configuration is named TST-switching
 (equivalent to 3-stage SSS-switching)

SSS presentation of TST-switch
Three stage switch combinations

- Possible three stage switch combinations:
 - Time-Time-Time (TTT) (not significant, no connection from PCM to PCM)
 - Time-Time-Space (TTS) (=TS)
 - Time-Space-Time (TST)
 - Time-Space-Space (TSS)
 - Space-Time-Time (STT) (=ST)
 - Space-Time-Space (STS)
 - Space-Space-Time (SST) (=ST)
 - Space-Space-Space (SSS) (not significant, high probability of blocking)

- Three interesting combinations TST, TSS and STS

Time-Space-Space switch

- Time-Space-Space switch can be applied to increase switching capacity
Space-Time-Space switch

- Space-Time-Space switch has a high blocking probability (like ST-switch) - not a desired feature in public networks

Graph presentation of space switch

- A space division switch can be presented by a graph $G = (V, E)$
 - V is the set of switching nodes
 - E is the set of edges in the graph
- An edge $e \in E$ is an ordered pair $(u, v) \in V$
 - more than one edge can exist between u and v
 - edges can be considered to be bi-directional
- V includes two special sets (T and R) of nodes not considered part of the switching network
 - T is a set of transmitting nodes having only outgoing edges (input nodes to switch)
 - R is a set of receiving node having only incoming edges (output nodes from switch)
Graph presentation of space switch (cont.)

- A connection requirement is specified for each \(t \in T \) by subset \(R_t \in R \) to which \(t \) must be connected.
 - Subsets \(R_t \) are disjoint for different \(t \).
 - In case of multi-cast \(R_t \) contains more than one element for each \(t \).
- A path is a sequence of edges \((t,a),(a,b),(b,c), \ldots ,(f,g),(g,r) \in E, t \in T, r \in R \) and \(a,b,c, \ldots ,f,g \) are distinct elements of \(V - (T+R) \).
- Paths originating from different \(t \) may not use the same edge.
- Paths originating from the same \(t \) may use the same edges.

\[
V = \{ t_1, t_2, \ldots , t_{15}, s_1, s_2, \ldots , s_5, u_1, u_2, u_3, v_1, v_2, \ldots , v_5, r_1, r_2, \ldots , r_{15} \}
\]
\[
E = \{ (t_1, s_1), \ldots (t_{15}, s_5), (s_1, u_1), (s_1, u_2), \ldots , (s_5, u_2), (u_1, v_1), (u_1, v_2), \ldots , (u_5, v_2), (v_1, r_1), (v_1, r_2), \ldots , (v_5, r_{15}) \}
\]
SSS-switch and its graph presentation

Graph presentation of connections