Introduction to Multiwavelength Optical Networks

Switching Technology S38.165

http://www.netlab.hut.fi/opetus/s38165

Source: Stern-Bala (1999), Multiwavelength Optical Networks

Contents

- The Big Picture
- Network Resources
- Network Connections

Optical network

- Why optical networks?
- "The information superhighway is still a dirt road; more accurately, it is a set of isolated multilane highways with cow paths for entrance."
- Definition: An optical network is a telecommunications network
- with transmission links that are optical fibers, and
- with an architecture designed to exploit the unique features of fibers
- Thus, the term optical network (as used here)
- does not necessarily imply a purely optical network,
- but it does imply something more than a set of fibers terminated by electronic switches
- The "glue" that holds the purely optical network together consists of
- optical network nodes (ONN) connecting the fibers within the network
- network access stations (NAS) interfacing user terminals and other nonoptical end-systems to the network

Network categories

Multiwavelength optical network

= WDM network
= optical network utilizing wavelength division multiplexing (WDM)

- Transparent optical network = purely optical network
- Static network = broadcast-and-select network
- Wavelength Routed Network (WRN)
- Linear Lightwave Network (LLN) = waveband routed network
- Hybrid optical network = layered optical network
- Logically Routed Network (LRN)

Physical picture of the network

Wide area optical networks - a wish list

-Connectivity

- support of a very large number of stations and end systems
- support of a very large number of concurrent connections including multiple connections per station
- efficient support of multi-cast connections

- Performance

- high aggregate network throughput (hundreds of Tbps)
- high user bit rates (few Gbps)
- small end-to-end delay
- low error rate / high SNR
- low processing load in nodes and stations
- adaptability to changing and unbalanced loads
- efficient and rapid means of fault identification and recovery

- Structural features

- scalability
- modularity
- survivability (fault tolerance)
-Technology/cost issues
- access stations: small number of optical transceivers per station and limited complexity of optical transceivers
- network: limited complexity of the optical network nodes, limited number and length of cables and fibers, and efficient use (and reuse) of optical spectrum

Optics vs. electronics

Optical domain

- photonic technology is well suited to certain simple (linear) signal-routing and switching functions
- optical power combining, dividing and filtering
-wavelength multiplexing, demultiplexing and routing
- channelizing needed to make efficient
use of enormous bandwidth of the fiber
-by wavelength division multiplexing (WDM)
-many signals operating on different wavelengths share each fiber
=> optics is fast but dumb
- connectivity bottleneck

Electrical domain

- electronics is needed to perform more complex (nonlinear) functions
-signal detection, regeneration and buffering
- logic functions (e.g. reading and writing packet headers)
- however, these complex functions limit the throughput
- electronics also gives a possibility to include in-band control information (e.g. in packet headers)
- enabling a high degree of virtual connectivity
- easier to control
=> electronics is slow but smart - electronic bottleneck

$$
\begin{array}{lll}
\text { P. Raatikainen } & \text { Switching Technology /2003 } & 11-7
\end{array}
$$

Optics and electronics

Hybrid approach:

- a multiwavelength purely optical network as a physical foundation
- one or more logical networks (LN) superimposed on the physical layer, each
- designed to serve some subset of user requirements and
- implemented as an electronic overlay
- electronic switching equipment in the logical layer acts as a middleman
- taking the high-bandwidth transparent channels provided by the physical layer and organizing them into an acceptable and cost-effective form

Why this hybrid approach ?

- purely optical wavelength selective switches:
- huge aggregate throughput of few connections
- electronic packet switches:
- large number of relatively low bit rate virtual connections
- hybrid approach exploits the unique capabilities of optical and electronic switching while circumventing their limitations

[^0]
Example LAN interconnection

- Consider a future WAN serving as a backbone that interconnects a large number of high-speed LANs (say 10,000), accessing the WAN through LAN gateways (with aggregate traffic of tens of Tbps)
- Purely optical approach
- each NAS connects its LAN to the other LAN's through individual optical connections $\Rightarrow 9,999$ connections per NAS
- this is far too much for current optical technology
- Purely electronic approach
- electronics easily supports required connectivity via virtual connections
- however, the electronic processing bottleneck in the core network does not allow such traffic
- Hybrid approach: both objectives achieved, since
- LN composed of ATM switches provides the necessary connectivity
- optical backbone at the physical layer supports the required throughput

Contents

- The Big Picture
- Network Resources
- Network Links: Spectrum Partitioning
- Layers and Sublayers
- Optical Network Nodes
- Network Access Stations
- Electrical domain resources
- Network Connections

Network links

A large number of concurrent connections can be supported on each network link through successive levels of multiplexing

- Space division multiplexing in the fiber layer:
- a cable consists of several (sometimes more than 100) fibers, which are used as bi-directional pairs
- Wavelength division multiplexing (WDM) in the optical layer:
- a fiber carries connections on many distinct wavelengths (λ-channels)
- assigned wavelengths must be spaced sufficiently apart to keep neighboring signal spectra from overlapping (to avoid interference)
- Time division multiplexing (TDM) in the transmission channel sublayer:
- a λ-channel is divided (in time) into frames and time-slots
- each time-slot in a frame corresponds to a transmission channel, which is capable of carrying a logical connection
- location of a time-slot in a frame identifies a transmission channel

P. Raatikainen	Switching Technology / 2003
$11-11$	

Fiber resources

Optical spectrum

- Since wavelength λ and frequency f are related by $f \lambda=c$, where c is the velocity of light in the medium, we have the relation

$$
\Delta f \approx-\frac{c \Delta \lambda}{\lambda^{2}}
$$

- Thus, $10 \mathrm{GHz} \approx 0.08 \mathrm{~nm}$ and $100 \mathrm{GHz} \approx 0.8 \mathrm{~nm}$ in the range of $1,550 \mathrm{~nm}$, where most modern lightwave networks operate
- The $10-\mathrm{GHz}$ channel spacing is sufficient to accommodate λ-channels carrying aggregate digital bit rates on the order of 1 Gbps - modulation efficiency of $0.1 \mathrm{bps} / \mathrm{Hz}$ typical for optical systems
- The $10-\mathrm{GHz}$ channel spacing is suitable for optical receivers, but much too dense to permit independent wavelength routing at the network nodes - for this, $100-\mathrm{GHz}$ channel spacing is needed.
- In a waveband routing network, several λ-channels (with $10-\mathrm{GHz}$ channel spacing) comprise an independently routed waveband (with $100-\mathrm{GHz}$ spacing between wavebands).

[^1]
Wavelength partitioning of the optical spectrum

Wavelength and waveband partitioning of the optical spectrum

Network based on spectrum partitioning

Contents

- The Big Picture
- Network Resources
- Network Links: Spectrum Partitioning
- Layers and Sublayers
- Optical Network Nodes
- Network Access Stations
- Electrical domain resources
- Network Connections

Layered view of optical network (1)

Layered view of optical network (2)

Layers and sublayers

- Main consideration in breaking down optical layer into sublayers is to account for
- multiplexing
- multiple access (at several layers)
- switching
- Using multiplexing
- several logical connections may be combined on a λ-channel originating from a station
- Using multiple access
- λ-channels originating from several stations may carry multiple logical connections to the same station
- Through switching
- many distinct optical paths may be created on different fibers in the network, using (and reusing) λ-channels on the same wavelength

Typical connection

Contents

- The Big Picture
- Network Resources
- Network Links: Spectrum Partitioning
- Layers and Sublayers
- Optical Network Nodes
- Network Access Stations
- Electrical domain resources
- Network Connections

Optical network nodes (1)

- Optical Network Node (ONN) operates in the optical path sublayer connecting N input fibers to N outgoing fibers
- ONNs are in the optical domain
- Basic building blocks:
- wavelength multiplexer (WMUX)
- wavelength demultiplexer (WDMUX)
- directional coupler (2x2 switch)
- static
- dynamic

- wavelength converter (WC)

Optical network nodes (2)

- Static nodes
- without wavelength selectivity
- NxN broadcast star (= star coupler)
- Nx1 combiner
- 1xN divider
- with wavelength selectivity
- NxN wavelength router (= Latin router)
- Nx1 wavelength multiplexer (WMUX)
- $1 \times \mathrm{N}$ wavelength demultiplexer (WDMUX)

Optical network nodes (3)

- Dynamic nodes

- without wavelength selectivity (optical crossconnect (OXC))
- NxN permutation switch
- RxN generalized switch
- RxN linear divider-combiner (LDC)
- with wavelength selectivity
- NxN wavelength selective crossconnect (WSXC) with M wavelengths
- NxN wavelength interchanging crossconnect (WIXC) with M wavelengths
- RxN waveband selective LDC with M wavebands

Wavelength multiplexer and demultiplexer

WMUX
WDMUX

Directional Coupler (1)

- Directional coupler (= 2×2 switch) is an optical four-port
- ports 1 and 2 designated as input ports
- ports 1' and 2' designated as output ports
- Optical power
- enters a coupler through fibers attached to input ports,
- divided and combined linearly
- leaves via fibers attached to output ports
- Power relations for input signal powers P_{1} and P_{2} and output powers $P_{1^{\prime}}$ and $P_{2^{\prime}}$ are given by

$$
\begin{aligned}
& P_{1^{\prime}}=a_{11} P_{1}+a_{12} P_{2} \\
& P_{2^{\prime}}=a_{21} P_{1}+a_{22} P_{2}
\end{aligned}
$$

- Denote the power transfer matrix by $A=\left[a_{i j}\right]$

Directional Coupler (2)

- Ideally, the power transfer matrix A is of the form

$$
A=\left[\begin{array}{cc}
1-\alpha & \alpha \\
\alpha & 1-\alpha
\end{array}\right], \quad 0 \leq \alpha \leq 1
$$

- If parameter α is fixed, the device is static, e.g. with $\alpha=1 / 2$ and signals present at both inputs, the device acts as a 2×2 star coupler
- If α can be varied through some external control, the device is dynamic or controllable, e.g. add-drop switch
- If only input port 1 is used (i.e., $P_{2}=0$), the device acts as a 1×2 divider
- If only output port 1 ' is used (and port 2^{\prime} is terminated), the device acts as a 2×1 combiner

Add-drop switch

Add-drop state

Bar state

Broadcast star

- Static NxN broadcast star with N wavelengths can carry
- N simultaneous multi-cast optical connections (= full multipoint optical connectivity)
- Power is divided uniformly

- To avoid collisions each input signal must use different wavelength
- Directional coupler realization
- (N/2) $\log _{2} N$ couplers needed

Wavelength router

- Static NxN wavelength router
with N wavelengths can carry
- N^{2} simultaneous unicast optical connections (= full point-to-point optical connectivity)
- Requires
- N 1xN WDMUX's
- N Nx1 WMUX's

Crossbar switch

- Dynamic RxN crossbar switch consists of
- R input lines
- N output lines
- RN crosspoints
- Crosspoints implemented by controllable optical couplers
- RN couplers needed
- A crossbar can be used as
- a NxN permutation switch (then $\mathrm{R}=\mathrm{N}$) or
- a RXN generalized switch

> crossbar used as a permutation switch

Permutation switch

- Dynamic NxN permutation switch (e.g. crossbar switch)
- unicast optical connections between input and output ports
- N! connection states (if nonblocking)
- each connection state can carry N simultaneous unicast optical connections
- representation of a connection state by a NxN connection matrix

Generalized switch

- Dynamic RxN generalized switch (e.g. crossbar switch)
- any input/output pattern possible
-2^{NR} connection states
- each connection state can carry (at most) R simultaneous multicast optical connections
- a connection state represented by a RxN connection matrix
- Input/output power relation $P^{\prime}=A P$ with NxR power transfer matrix $A=\left[a_{i j}\right]$, where
$a_{i j}= \begin{cases}\frac{1}{N R}, & \text { if switch }(i, j) \text { is on } \\ 0, & \text { otherwise }\end{cases}$

Linear Divider-Combiner (LDC)

- Linear Divider-Combiner (LDC) is a generalized switch that
- controls power-dividing and power-combining ratios
- less inherent loss than in crossbar
- Power-dividing and power-combining ratios

- $\delta_{i j}=$ fraction of power from input port j directed to output port i '
- $\sigma_{i j}=$ fraction of power from input port j combined onto output port i
- In an ideal case of lossless couplers, we have constraints

$$
\sum_{i} \delta_{i j}=1 \quad \text { and } \quad \sum_{j} \sigma_{i j}=1
$$

- The resulting power transfer matrix $A=\left[a_{i j}\right]$ is such that

$$
a_{i j}=\delta_{i j} \sigma_{i j}
$$

LDC and generalized switch realizations

δ - σ linear divider-combiner

Wavelength selective cross-connect (WSXC)

- Dynamic NxN wavelength selective crossconnect (WSXC) with M wavelengths - includes $\mathrm{N} 1 \times \mathrm{M}$ WDMUXs, M NxN permutation switches, and N Mx1 WMUXs
$-(N!)^{M}$ connection states if the permutation switches are nonblocking
- each connection state can carry NM simultaneous unicast optical connections
- representation of a connection
 state by M NxN connection matrices optical switches

P. Raatikainen \quad Switching Technology / 2003	$11-37$

Wavelength interchanging cross-connect (WIXC)

- Dynamic NxN wavelength interchanging crossconnect (WIXC) with M wavelengths
- includes $\mathrm{N} 1 \times \mathrm{M}$ WDMUXs, $1 \mathrm{NM} \times$ NM permutation switch, NM WCs, and N Mx1 WMUXs
- (NM)! connection states if the permutation switch is nonblocking
- each connection state can carry NM simultaneous unicast connections
- representation of a connection state by a NMxNM connection matrix

Waveband selective LDC

- Dynamic RxN waveband selective LDC with M wavebands
- includes R 1xM WDMUXs, M RxN LDCs, and N Mx1 WMUXs
$-2^{\text {RNM }}$ connection states (if used as a generalized switch)
- each connection state can carry (at most) RM simultaneous multi-cast connections
- representation of a connection state by a M RxN connection matrices

Contents

- The Big Picture
- Network Resources
- Network Links: Spectrum Partitioning
- Layers and Sublayers
- Optical Network Nodes
- Network Access Stations
- Electrical domain resources
- Network Connections

Network access stations (1)

- Network Access Station (NAS) operates in the logical connection, transmission channel and λ-channel sublayers
- NASs are the gateways between the electrical and optical domains

- Functions:

- interfaces the external LC ports to the optical transceivers
- implements the functions necessary to move signals between the electrical and optical domains

Network access stations (2)

- Transmitting side components:
- Transmission Processor (TP) with a number of LC input ports and transmission channel output ports connected to optical transmitters (converts each logical signal to a transmission signal)
- Optical Transmitters (OT) with a laser modulated by transmission signals and connected to a WMUX (generates optical signals)
- WMUX multiplexes the optical signals to an outbound access fiber
- Receiving side components:
- WDMUX demultiplexes optical signals from an inbound access fiber and passes them to optical receivers
- Optical Receivers (OR) convert optical power to electrical transmission signals, which are corrupted versions of the original transmitted signals
- Reception Processor (RP) converts the corrupted transmission signals to logical signals (e.g. regenerating digital signals)

Elementary network access station

Nonblocking network access station

Wavelength add-drop multiplexer (WADM)

Contents

- The Big Picture
- Network Resources
- Network Links: Spectrum Partitioning
- Layers and Sublayers
- Optical Network Nodes
- Network Access Stations
- Electrical domain resources
- Network Connections

End System

- End systems are in the electrical domain
- In transparent optical networks, they are directly connected to NASs
- purpose is to create full logical connectivity between end stations
- In hybrid networks, they are connected to LSNs
- purpose is to create full virtual connectivity between end stations

Logical Switching Node (LSN)

- Logical switching nodes (LSN) are needed in hybrid networks, i.e. logically routed networks (LRN)
- LSNs are in the electrical domain
- They may be e.g.
- SONET digital cross-connect systems (DCS), or
- ATM switches, or
- IP routers

Contents

- The Big Picture
- Network Resources
- Network Connections
- Connectivity
- Connections in various layers
- Example: realizing full connectivity between five end systems

Connectivity

- Transmitting side:
- one-to-one
- (single) unicast
- one-to-many
- multiple unicasts
- (single) multicast
- multiple multicasts
- Receiving side:
- one-to-one
- (single) unicast
- (single) multicast
- many-to-one
- multiple unicasts
- multiple multicasts

- Network wide:

- point-to-point
- multipoint

Connection Graph (CG)

- Representing point-to-point connectivity between end systems

Connection Hypergraph (CH)

- Representing multipoint connectivity between end systems

| transmitting |
| :---: | :---: | :---: |
| side | | hyper- |
| :---: | :---: |
| edges | | receiving |
| :---: |
| side |

Connection hypergraph

Tripartite representation

Contents

- The Big Picture
- Network Resources
- Network Connections
- Connectivity
- Connections in various layers
- Example: realizing full connectivity between five end systems

Connections in various layers

- Logical connection sublayer
- Logical connection (LC) is a unidirectional connection between external ports on a pair of source and destination network access stations (NAS)
- Optical connection sublayer
- Optical connection (OC) defines a relation between one transmitter and one or more receivers, all operating in the same wavelength
- Optical path sublayer
- Optical path (OP) routes the aggregate power on one waveband on a fiber, which could originate from several transmitters within the waveband

Notation for connections in various
 layers

- Logical connection sublayer

$-[a, b]=$ point-to-point logical connection from an external port on station a to one on station b
$-[a,\{b, c, \ldots\}]=$ multi-cast logical connection from a to set $\{b, c, \ldots\}$

- station a sends the same information to all receiving stations
- Optical connection sublayer
$-(a, b)=$ point-to-point optical connection from station a to station b
$-(a, b)_{k}=$ point-to-point optical connection from a to b using wavelength λ_{k}
$-(a,\{b, c, \ldots\})=$ multi-cast optical connection from a to set $\{b, c, \ldots\}$
- Optical path sublayer
$-\langle a, b\rangle=$ point-to-point optical path from station a to station b
$-\langle a, b\rangle_{k}=$ point-to-point optical path from a to b using waveband w_{k}
$-\langle a,\{b, c, \ldots\}\rangle=$ multi-cast optical path from a to set $\{b, c, \ldots\}$

Example of a logical connection between two NASs

Contents

- The Big Picture
- Network Resources
- Network Connections
- Connectivity
- Connections in various layers
- Example: realizing full connectivity between five end systems

Example: realization of full connectivity between 5 end systems

Solutions

- Static network based on star physical topology
- full connectivity in the logical layer (20 logical connections)
- 4 optical transceivers per NAS, 5 NASs, 1 ONN (broadcast star)
- 20 wavelengths for max throughput by WDM/WDMA
- Wavelength routed network (WRN) based on bi-directional ring physical topology
- full connectivity in the logical layer (20 logical connections)
- 4 optical transceivers per NAS, 5 NASs, 5 ONNs (WSXCs)
- 4 wavelengths (assuming elementary NASs)
- Logically routed network (LRN) based on star physical topology and unidirectional ring logical topology
- full connectivity in the virtual layer but only partial connectivity in the logical layer (5 logical connections)
- 1 optical transceiver per NAS, 5 NASs, 1 ONN (WSXC), 5 LSNs
- 1 wavelength

Static network realization

LCG

Wavelength routed network realization

Logically routed network realization

[^0]: P. Raatikainen

[^1]: P. Raatikainen

