Lecture topics

- Firewalls
- Security model with firewalls
- Intrusion detection systems
- Intrusion prevention systems
- How to prevent and detect attacks

What is a firewall

- Divides network into two (or more) parts with different security policy
 - internal network ⇔ Internet
 - engineering ⇔ accounting: the other network must not be less secure that the other one. They just have different security policies or different assets to protect.
 - internal network ⇔ public servers ⇔ Internet
 - building automation ⇔ VoIP ⇔ surveillance system
- Enforces security policy
 - allowed traffic
 - prohibited traffic

Refer to IPsec security policy database (SPD): traffic is bypassed, discarded, or bypassed as protected.

- May have additional roles, such as VPN endpoint

Firewall types

Packet-filtering makes decision based only packet fields

- router ACL (access control list)
- TCP implicit state: for example to disallow incoming connections, firewall will drop any packet that has SYN flag set but no ACK and allows any packet with SYN+ACK.
- difficult with UDP, also some other TCP-based protocols such as FTP in active mode, where server establishes connection to client.

Stateful keeps track on connections

- maintains connection state
 - single point of failure
 - has to have some timeout mechanism as the state space is limited. Some attacks may exhaust state space.
 ⇒ random disconnections
• possible to accept related connections: for some protocols this needs application gateway.

Application gateway interpret connection on application level

• checks if application traffic is valid
• protects from simple port changes
• may provide payload inspection to detect malicious payload
• proxy servers
 – call-out
 – in-line (transparent)

Address-translation between internal numbering and external addresses

• using NAPT provides same as prohibiting incoming TCP
• internal topology can be hidden

Host-based or software firewalls add on application security

• completes application security and access control
• possibly user- and application-level control

Hybrid use combination of different types for performance

• check start of connection with application gateway, switch to stateful filtering ⇒ better performance as bulk of traffic is handled by fast path.

Firewall topologies

![Diagram of Firewall Topologies](image)

Building firewall rules

• Defining default policy

 – “everything not prohibited is allowed”
 * “router” ACL
 * enumerate vulnerable services and protect them
 – “everything not allowed is prohibited”
 * enumerate needed and safe services and allow them
 – both policies need continuous updating

• There should be one rule for one packet

 – multiple overlapping rules
order of rules matters

– performance issues: hardware-based routers/firewalls can handle certain number of rules without significant performance penalty. For software-based firewalls order of rules does matter.

• Possibility to oversight
• High-level languages not solution

Deploying multiple firewalls

• Helps to limit the impact of attack
• Protection by diversity
 – on other hand, multiple systems to update
• Designing rules even more complicated

What firewall protects and what not

• Protects
 – from known, vulnerable protocols
 – static network configuration
• Does not protect for / from
 – executable/active content
 – malicious insider
 – loopholes: modems, WLAN, mobile networks
 – carry-in attacks such as notebooks, mass storage
 – new attacks
 – most DoS attacks
• May result “hard perimeter, mellow inside”
 – failure to update internal systems
 – selecting insecure protocols and applications

Security in organisation
How secure are firewalls

- Common Vulnerabilities and Exposures: 110 matches on “firewall”

 Check Point FireWall-1 34 entries
 Cisco 13 entries
 Juniper 1 entry
 Linux 6
 Symantec 17
 WatchGuard 11 entries

- More features (VPN, virus checks, QoS protection)
 ⇒ more code
 ⇒ more bugs
 ⇒ more vulnerabilities

Intrusion Detection Systems

- How to make sure that firewall is not leaking
- How to detect internal attacks
- IDS is designed to
 - detect,
 - identify, and
 - report malicious activity
- IDS can be located different places
 - application
 - host
 - network

Application and host IDS

- Application instrumented to identify abnormal actions
 - high level of abstraction
 - user actions monitored
 - policy violations
 - application log analysis
 - access to encrypted data
 - may not protect application flaws
- Host instrumented
 - reference monitor
 - actions by user and application
 - host log analysis
- Log analysis best on separate host
 - provides after-the-fact analysis
 - vulnerable to network attacks
Network IDS

- Monitors traffic
 - best done with signal splitters

- Large volume of data
 - low level of abstraction
 - encrypted traffic problematic

- Mostly misuse detection
 - recorded patterns of misuse (signatures)
 - frequent updates (like virus scanners)

```
alert tcp $EXTERNAL_NET any -> $HOME_NET 22
(msg:"EXPLOIT ssh CRC32 overflow /bin/sh";
flow:to_server,established;
content:"/bin/sh"; )
```

- Anomaly detection
 - detecting differences to normal
 * threshold detection
 * statistical profile
 * rule-based detection
 - learning system

- Large number of alerts
 - 3700 alerts from corporate network per day
 - 48 should be studied in detail
 - 2 warrant an action

IDS in large network

- One should monitor every link
 ⇒ very expensive

- Select important links
 - full census on those

- Do random sampling on other links
 - if one samples every 512th packet
 ⇒ not a big increase in traffic
 - large problems notified immediately

Honeypots

- A false system similar to production system
 - all access illegal
 ⇒ any accessing is potential intruder

- Used as part of IDS
 - a connection results monitoring

- How to keep attacker from telling difference from real system
 - should be not too weak
 - should have “real” data and traffic
 - if virtual host, should not be visible
IDS reaction too slow

- IDS identifies attack
 - analysis may not be real-time
 - corrective actions may take time
- Epidemic security problem may be instant
- System can be scanned, attacked, and compromised in a minute or less
 \(\Rightarrow \) Need for automation

Intrusion Prevention Systems (IPS)

- IDS with automatic response
- Suffers from large number of false alerts
- A firewall with automatic ACL update
- Virus scanners are host-based IPS
- Still at early stages
 - does not stop vendors from marketing...

Traffic traceback

- Problem: where incoming attack traffic originates
- Source IP cannot be trusted
 - sender can put it to any address
 - ingress filtering not deployed universally
- Should not need additional hardware or load on routers
- Scalability problems, few proposals

Security in Ad-hoc networks

- Ad-hoc networks interesting topic
 - self-building topology
 - extending network coverage
- Must rely on other hosts
 - no central authority, block lists
 - no trusted core network
 - routing done by devices
- Public key-based per-packet authentication too heavy
 - modern PC throughput few ten kbit/s
- How to communicate trustfulness?
Challenges in All-IP world

- Large number of non-technical users
 - the “---:--” generation
 - rightful ignorance: I want to watch movies — fixing security problems does not match to my idea of relaxing.
- Service provider responsibility
- Multi-vendor environment

Summary

- Firewall and IDS are good tools
- Must know their limitations
- Future challenges
 - accurate detection of malicious activity
 - security in ubiquitous computing
 - trust in autonomous systems

Easter holiday 2005-03-29, no lecture

References

