WAP Security

Helsinki University of Technology
S-38.153 Security of Communication Protocols
Mikko.Kerava@iki.fi
15.4.2003
Contents

1. Introduction to WAP
2. Wireless Transport Layer Security
3. Other WAP security components
Wireless Application Protocol

- Designed to bring WWW look and feel and advanced services to mobile terminals
- Open standard, developed by WAP Forum industry association
- Bearer independence
- Device independence
WAP Protocol Stack (version 1.x)

Application Layer
Wireless Application Environment (WAE)
Other Services and Applications
Session Layer
Wireless Session Protocol (WSP)
Transaction Layer
Wireless Transaction Protocol (WTP)
Security Layer
Wireless Transport Layer Security (WTLS)
Transport Layer
Datagrams (UDP/IP)
Datagrams (WDP)
Network Layer
Wireless Bearers:
- SMS
- USSD
- CSD
- IS-136
- CDMA
- IDEN
- CDPD
- PDC-P
- Etc...

© WapForum
WAP version 1.x
Communication Model

© WapForum
Problems

Data is decrypted and again encrypted in WAP gateway
No end to end security => man-in-the-middle-attack
No control of SSL part of the connection
Some problems in WTLS security
WAP version 2.0

Released January 2002
For mobile networks supporting IP
Support for TLS => End to end security
Wireless profiled TCP and HTTP
Dual Stack => WAP 1.x support
WAP version 2.x
Communication Model

TCP*: Wireless Profiled TCP (WP-TCP)
WTLS

Based on TLS version 1.0
Some modifications to suite better in wireless environment

Privacy
 • Symmetric cryptography

Authentication
 • Certificates

Integrity
 • Message Authentication Codes (MAC)
WTLS internal architecture

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Record Protocol</td>
</tr>
</tbody>
</table>

- **Handshake Protocol**: Authentication, key-exchange and agreement of security parameters
- **Alert Protocol**: Error Handling. Warning, Critical and Fatal messages
- **Application Protocol**: Interface for upper layers
- **Change Cipher Spec Protocol**: Announce switch to negotiated algorithms and values
- **Record protocol**: Takes care of encryption, decryption, data integrity and authentication
Authentication in the WTLS

Three classes of authentication:
- Class 1: Anonymous
- Class 2: Server Authentication
- Class 3: Client and Server Authentication

Authentication is carried out with certificates

Supported certificates:
- X.509v3
- WTLS (Optimised with size)
- X9.68 (Currently in draft)
WTLS Handshake Procedure

Client

- Client Hello
- Server Hello
- Server Certificate
- Server Key Exchange
- Certificate Request
- Server Hello Done
- Client Certificate
- Client Key Exchange
- Certificate Verify
- [Change Cipher Spec]
- Finished
- [Change Cipher Spec]
- Finished

Server

- Application Data
WTLS Handshake Procedure

Client Hello and Server Hello:
 Parties agree on session capabilities and exchange random values for master secret calculation

Server Key Exchange:
 Servers public key to conduct pre-master secret.

Client Key Exchange:
 Pre-master secret encrypted with servers public key
Other Handshaking Procedures

Resumed Connection
If previously negotiated session, client sends Client Hello with sessionID. If both have the same sessionID they may continue the secure session

Abbreviated Handshake
Client and server have shared secret, which is used as a pre-master secret

Optimised Full Handshake
Server retrieve client's certificate using the trusted third party. Master key calculated using Diffie-Hellman method
Key Exchange

Algorithms:
- RSA, Anonymous RSA
 - Server Key Exchange: the public key of the server.
 - Client Key Exchange: pre-master secret encrypted with the public key of the server
- Diffie-Hellman, elliptic curve Diffie-Hellman
 - Client and server calculate pre-master secret based on one's private key and the counterpart's public key

Master secret is calculated using pre-master secret and random values that were exchanged in Client Hello and Server Hello messages
Privacy – Encryption

Encryption algorithm is chosen in the Server Hello message

Supported block cipher algorithms:
- **RC5**
 - 40, 56, 128 bit keys
- **DES**
 - 40, 56 bit keys
- **3DES**
 - 40, 56, 128 bit keys
- **IDEA**
 - 40, 56, 128 bit keys

No stream cipher algorithms expect NULL
Integrity – MAC

Data integrity is ensured using the Message Authentication Codes

MAC algorithm is chosen in the Server Hello message

WTLS supports many versions of common MAC algorithms

- SHA
- MD5

MAC is generated over the compressed WTLS data
Security problems in WTLS

Developed to support wide range of mobile device, including devices with limited CPU and memory resources
=> NULL and weak encryption methods available

Allowing anonymous authentication opens door to man-in-the-middle attack

Attacks against WTLS by Markku-Juhani Saarinen:
http://www.jyu.fi/~mjos/wtls.pdf
 ● Weak MAC available
 ● RSA PKCS#1 1.5
 ● Unauthenticated alert messages
 ● Plaintext leaks
Is WTLS security level sufficient?

Security level is a compromise between usability and the strength of the encryption method.

Many WAP services may not require strong encryption.

Preventing use of weak algorithms and using strong authentication (RSA, big enough key size), good encryption algorithms (RC5) and full MAC algorithm provides high enough security for commercial purposes (in my opinion).

But end user is not always able to affect on or even find out what algorithms is in use.
Other WAP Security Components

WIM – WAP Identification Module
A tamper-resistant device which is used in performing WTLS and application level security functions and to store and process information needed for user identification and authentication.

WMLScript Crypto API
Application programming interface providing basic security functions, such as digital signatures to be used for authentication or non-repudiation purposes in application level

WPKI – WAP Public Key Infrastructure