Exercise 1

Consider a balanced allocation of the physical network model, characterized by \(\Phi(x) \). Show that the service capacities \(\psi_1, \ldots, \psi_N \) of the corresponding processor-sharing queueing network model are balanced by

\[
\Psi(y) = \prod_{i \in S_0} \frac{1}{y_i} \cdot \Phi(x) \prod_{k=1}^K \left(\frac{x_k}{y_k}, i \in S_k \right)
\]

Exercise 2

The following excerpt from [BP03a] contains an inconsistency. Find this inconsistency (1 point) and present a correction (1 point).

"4.1 Fair allocations

As mentioned in Section 1, most allocations considered so far in the literature are based on the notion of utility. Assume the utility of a flow is an increasing and strictly concave function \(U \) of its rate. A unique allocation is then defined by maximizing the overall utility:

\[
\sum_{k=1}^K x_k U \left(\frac{\phi_k(x)}{x_k} \right),
\]

under the capacity constraints (1). We say that these allocations are ”fair” in the sense that the utility function \(U \) is the same for all classes of flow. In particular, (...) The allocation associated with the log utility function is known as proportional fairness [14]. Another example is the range of allocations associated with the power functions \(U = (\cdots)^\alpha \), where the parameter \(\alpha, \alpha < 1, \alpha \neq 0 \), captures the trade-off between efficiency (in terms of overall allocated capacity \(\sum_{k=1}^K \phi_k(x) \)) and fairness. Specifically, the allocation maximizes the overall capacity when \(\alpha \to 1 \) and tends to max-min fairness when \(\alpha \to -\infty \) [23]. For convenience, we also refer to max-min fairness as a utility-based allocation.