

S-38.148
Ns2 simulation exercise

Table of contents

1. Introduction ..3
2. Theoretical background...3

2.1. Overview of TCP’s congestion control ..3
2.1.1. Slow start and congestion avoidance..4
2.1.2. Fast Retransmit...4
2.1.3. Fast Recovery...5

2.2. Modelling TCP’s performance...5
2.2.1. Simple packet-level model for the steady-state TCP throughput.................................5
2.2.2. Complex packet-level model for the steady-state TCP throughput7
2.2.3. A flow-level processor sharing model for the flow transfer times...............................7

3. Exercise..8
3.1. Code for the flow generation..9
3.2. General simulation parameters...11
3.3. Task1 ..11

3.3.1. Simulation parameters for Task1 ...12
3.4. Task2 ..12

3.4.1. Simulation parameters for Task2 ...13
3.5. Handout requirements ..14
3.6. Getting help ..14

A. Appendix ...15
A.1. Installing and using ns2..15
A.2. General description...15
A.3. Otcl basics ..16

A.3.1. Assigning values to variables...16
A.3.2. Procedures ..16
A.3.3. Files and lists ..17
A.3.4. Calling subprocesses ..17

A.4. Creating the topology ...18
A.4.1. Nodes..18
A.4.2. Agents, applications and traffic sources...18
A.4.3. Traffic Sinks...20
A.4.4. Links...20

A.5. Adding loss modules ..21
A.6. Tracing and monitoring..21

A.6.1. Traces ...22
A.6.2. Monitors ...23

A.7. Controlling the simulation..24
A.8. Simple ns2 example..25

1. Introduction

In this exercise you will have to simulate the transfer times of files, transported on top of TCP, in
two test networks and compare the analytical results with the simulated results. The purpose is to
make you familiar with TCP’s congestion control mechanisms and performance as well as the ns2
simulator. Notice that you are supposed to carry out this exercise independently, group work is not
allowed.

2. Theoretical background

2.1. Overview of TCP’s congestion control

TCP implements a window based flow control mechanism, as explained in [APS99]. Roughly
speaking, a window based protocol means that the so called current window size defines a strict
upper bound on the amount of unacknowledged data that can be in transit between a given sender-
receiver pair. Originally TCP’s flow control was governed simply by the maximum allowed
window size advertised by the receiver and the policy that allowed the sender to send new packets
only after receiving the acknowledgement for the previous packet.

After the occurrence of the so called congestion collapse in the Internet in the late 80’s it was
realised, however, that special congestion control algorithms would be required to prevent the TCP
senders from overrunning the resources of the network. In 1988, Tahoe TCP was released including
three congestion control algorithms: slow start, congestion avoidance and fast retransmit. In 1990
Reno TCP, providing one more algorithm called fast recovery, was released.

Besides the receiver’s advertised window, awnd, TCP’s congestion control introduced two new
variables for the connection: the congestion window, cwnd, and the slowstart threshold, ssthresh.
The window size of the sender, w, was defined to be

w = min(cwnd, awnd),

instead of being equal to awnd. The congestion window can be thought of as being a counterpart to
advertised window. Whereas awnd is used to prevent the sender from overrunning the resources of
the receiver, the purpose of cwnd is to prevent the sender from sending more data than the network
can accommodate in the current load conditions.

The idea is to modify cwnd adaptively to reflect the current load of the network. In practice, this is
done through detection of lost packets. A packet loss can basically be detected either via a time-out
mechanism or via duplicate ACKs.

Timeouts:

Associated with each packet is a timer. If it expires, timeout occurs, and the packet is retransmitted.
The value of the timer, denoted by RTO, should ideally be of the order of an RTT. However, as the
value of RTT is not known in practice, it is measured by the TCP connection by using, e.g, the so

called Karn algorithm. In this exercise, you will also need to measure the value of RTO, explained
later in chapter 3.7.

Duplicate ACKs:

If a packet has been lost, the receiver keeps sending acknowledgements but does not modify the
sequence number field in the ACK packets. When the sender observes several ACKs
acknowledging the same packet, it concludes that a packet has been lost.

2.1.1. Slow start and congestion avoidance

In slow start, when a connection is established, the value of cwnd is first set to 1 and after each
received ACK the value is updated to

cwnd = cwnd + 1

implying doubling of cwnd for each RTT.

The exponential growth of cwnd continues until a packet loss is observed, causing the value of
ssthresh to be updated to

ssthresh = cwnd/2.

After the packet loss, the connection starts from slow start again with cwnd = 1, and the window is
increased exponentially until it equals ssthresh, the estimate for the available bandwidth in the
network. At this point, the connection goes to congestion avoidance phase where the value of cwnd
is increased less aggressively with the pattern

cwnd = cwnd + 1/cwnd,

implying linear instead of exponential growth. This linear increase will continue until a packet loss
is detected.

2.1.2. Fast Retransmit

Duplicate ACKs that were mentioned to be one way of detecting lost packets, can also be caused by
reordered packets. When receiving one duplicate ACK the sender can not yet know whether the
packet has been lost or just gotten out of order but after receiving several duplicate ACKs it is
reasonable to assume that a packet loss has occurred. The purpose of fast retransmit mechanism is
to speed up the retransmission process by allowing the sender to retransmit a packet as soon as it
has enough evidence that a packet has been lost. This means that instead of waiting for the
retransmit timer to expire, the sender can retransmit a packet immediately after receiving three
duplicate ACKs.

2.1.3. Fast Recovery

In Tahoe TCP the connection always goes to slow start after a packet loss. However, if the window
size is large and packet losses are rare, it would be better for the connection to continue from the
congestion avoidance phase, since it will take a while to increase the window size from 1 to
ssthresh. The purpose of the fast recovery algorithm in Reno TCP is to achieve this behaviour.

In a connection with fast retransmit, the source can use the flow of duplicate ACKs to clock the
transmission of packets. When a possibly lost packet is retransmitted, the values of ssthresh and
cwnd will be set to

ssthresh = cwnd/2

and

cwnd = ssthresh

meaning that the connection will continue from the congestion avoidance phase and increases its
window size linearly.

2.2. Modelling TCP’s performance

The traditional methods for examining the performance of TCP have been simulation,
implementations and measurements. However, efforts have also been made to analytically
characterize the throughput of TCP as a function of parameters such as packet drop rate and round
trip time. Also TCP flow transfer times have been analyzed. For the analysis, both packet level
[FM80] and flow level models have been developed. Some efforts for integrating the packet and
flow level models have also been made [LBMK03].

2.2.1. Simple packet-level model for the steady-state TCP throughput

The simple model presented in [F99] provides an upper bound on TCP’s average sending rate that
applies to any conformant tcp. A conformant TCP is defined in [F99] as a TCP connection where
the TCP sender adheres to the two essential components of TCP’s congestion control: First,
whenever a packet drop occurs in a window of data, the TCP sender interpretes this as a signal of
congestion and responds by cutting the congestion window at least in half. Second, in the
congestion avoidance phase where there is currently no congestion, the TCP sender increases the
congestion window by at most one packet per window of data. Thus, this behaviour corresponds to
TCP Reno in the presence of only triple duplicate loss indications.

In [F99] a steady-state model is assumed. It is also assumed for the purpose of the analysis that a
packet is dropped from a TCP connection if and only if the congestion window has increased to W
packets. Because of the steady-state model the average packet drop rate, p, is assumed to be
nonbursty.

The TCP sender follows the two components of TCP’s congestion control as mentioned above.
When a packet is dropped, the congestion window is halved. After the drop, the TCP sender
increases linearly its congestion window until the congestion window has reached its old value W

and another packet drop occurs. The development of TCP’s congestion window under these
assumptions is depicted in Figure 1.

Figure 1 Development of TCP's congestion window

If a TCP sender with packets of B bytes and a reasonably constant roundtrip time of R seconds is
considered, it is clear that with the assumptions of the model the TCP sender transmits at least

(1) 2

8

3
...1

22
WW

WW ≈++




 ++

packets per a dropped packet. Thus the packet drop rate p is bounded by

(2)
23

8

W
p ≤ .

From (2), the upper bound for W is:

(3)
p

W
3

8≤ .

In the steady-state model the average congestion window is 0.75W over a single cycle. Thus the
maximum sending rate for the TCP connection over this cycle in bytes is

(4)
RTT

BW
T

**75.0≤ .

W/2

W

W W/2 3W/2 RTT

Substituting the upper limit for W, we get

(5)
pRTT

B

pRTT

B
T

*

*22.1

*

*3/25.1 ≈≤ ,

where B is the packet size, RTT is the round trip delay and p is the steady-state packet drop rate.

This model should give reasonably reliable results with small packet losses (< 2%), but with higher
loss rates it can considerably overestimate TCP’s throughput. Also, the equations derived do not
take into account the effect of retransmit timers. Basically, TCP can detect packet loss either by
receiving “triple-duplicate” acknowledgements (four ACKs having the same sequence number), or
via time-outs. In this model it is assumed that packet loss is observed solely by triple duplicate
ACKs.

2.2.2. Complex packet-level model for the steady-state TCP throughput

A good model for predicting TCP throughput should capture both the time-out and “triple-
duplicate” ACK loss indications and provide fairly accurate estimates also with higher packet
losses. A more complex model presented in [PFTK98] takes time-outs into account and is
applicable for broader range of loss rates. In [PFTK98] the following approximation of TCP’s
throughput, T(p):

(6)

()



















+





+

≈
2

0

max

321
8

3
3,1min

3

2

1
,min)(

pp
bp

T
bp

RTT
RTT

W
pT ,

where Wmax is the receiver’s advertised window and thus the upper bound for the congestion
window, RTT is the round trip time, p the loss indication rate, T0 TCP’s average retransmission
time-out value and b the number of packets that are acknowledged by each ACK. In the
denominator, the first term is due to triple-duplicate acks, and the second term models the timeouts.
With larger loss rates the second term dominates.

2.2.3. A flow-level processor sharing model for the flow transfer times

In [FM80] the transfer times of jobs in a processor-sharing system with M job classes is analyzed.
The processor sharing system divides the processor resources among the job classes so that a class k
job receives a fraction

 (7))/(
1

∑
=

M

j
jjk Ngg

of the resources, where Nj denotes the number of jobs in class j and gj denotes the weighting factor
of class j. Thus, the resource is not shared evenly between jobs of different classes, and hence this
processor sharing model is sometimes referred to as the Discriminatory Processor Sharing model
(DPS). Assuming that class-k jobs arrive according to a Poisson process with intensity λk, the
unconditional average response times satisfy the following equations:

(8) ,,...,2,1,
1

1
11

Mk
gg

Wg

gg

g
W

k

M

j kkjj

jjj
M

j kkjj

jj
k ==

+
−












+

− ∑∑
== µµµ

λ
µµ

λ

where 1/�k is the average required service time for the job, assuming that the service times are
exponentially distributed. The equations in (8) can be alternatively expressed as

(9) Mk

g

g

W

g

g
W

k

M

j

j

k
kj

jj
M

j

j

k
kj

j
k ,...,2,1,

1
1

11

==
+

−



















+
− ∑∑

== µµµ

λ

µµ

λ
.

Now, it is not necessary to know the exact weighing factors gj but only their ratios.

Application to TCP: Assuming that the throughput of a TCP flow in class k can be approximated

by ()pRTTc k */ , where c is a constant, the ratio gi/gj becomes

(10)
i

j

j

i

RTT

RTT

g

g
= .

The equations in (9) can be used to calculate the average transfer times for TCP flows, if the
weights are interpreted according to (10). Observe that for a given TCP sender, the RTTs are
random due to queuing delays at the bottleneck. The simplest approximation for class-k RTT is to
assume it consists of the constant parts, i.e., RTTk equals the sum of propagation delays + packet
transmission delays at access link and bottleneck link (remember that RTT means by definition the
total delay in both directions). This is more accurate the less the random queuing delays impact the
RTT. A more detailed approximation would take into account also the mean queuing delay at the
bottleneck. Furthermore, the parameter λk is the intensity at which flows arrive and the parameter
1/�k equals B/C, where B is the mean file size (file sizes are assumed to be exponentially
distributed) and C is the bottleneck bandwidth. Finally, the throughput of a class-k flow, denoted by
Tk, is by definition the mean file size divided by the average class-k transfer time, i.e.,

(11)
k

k W

B
T = .

3. Exercise

Note that, a primer on OTcl and ns2 is given in Appendix A.

In this exercise, the idea is to perform flow level simulations of TCP performance, i.e., the system
to be simulated consists of randomly arriving files that will be transported via TCP across a
bottleneck link. Two tasks are given, where in the first one, traffic is generated directly from TCP
sources to the bottleneck and packet losses are introduced artificially through a so called loss
module. In the second task, TCP traffic is concentrated through a tree-type access network and the
packet losses occur naturally due to finite buffers.

3.1. Code for the flow generation

The following code shows how you can create many short TCP-flows belonging to different RTT-
classes. Notice that you have access to the flow transfer times by modifying the Agent/TCP
instproc done method. This code itself does not create the TCP flows or record the results, you
have to call these methods in a separate main program, where you start the simulation and schedule
the arrivals of the flows. The code below is part of the skeleton code that is given on the course web
page.

#This code contains methods for flow generation and result recording.

the total (theoretical) load in the bottleneck link
set rho 0.8
puts "rho = $rho"

Filetransfer parameters
set mfsize 500

bottleneck bandwidth, required for setting the load
set bnbw 10000000

set nof_tcps 100 #maximum number of tcps
set nof_classes 4 #number of RTT classes
set rho_cl [expr $rho/$nof_classes] #load divided evenly between RTT classes
puts "rho_cl=$rho_cl, nof_classes=$nof_classes"

set mean_intarrtime [expr ($mpktsize+40)*8.0*$mfsize/($bnbw*$rho_cl)]
#flow interarrival time

puts "1/la = $mean_intarrtime"

for {set ii 0} {$ii < $nof_classes} {incr ii} {
 set delres($ii) {} #contains the delay results for each class
 set nlist($ii) {} #contains the number of active flows as a function of time
 set freelist($ii) {} #contains the free flows
 set reslist($ii) {} #contains information of the reserved flows
}

Agent/TCP instproc done {} {
 global nssim freelist reslist ftp rng mfsize mean_intarrtime nof_tcps simstart
simend delres nlist
 #the global variables nssim (ns simulator instance), ftp (application),
 #rng (random number generator), simstart (start time of the simulation) and
 #simend (ending time of the simulation) have to be created by the user in
 #the main program

 #flow-ID of the TCP flow
 set flind [$self set fid_]

 #the class is determined by the flow-ID and total number of tcp-sources
 set class [expr int(floor($flind/$nof_tcps))]
 set ind [expr $flind-$class*$nof_tcps]

 lappend nlist($class) [list [$nssim now] [llength $reslist($class)]]

 for {set nn 0} {$nn < [llength $reslist($class)]} {incr nn} {
 set tmp [lindex $reslist($class) $nn]
 set tmpind [lindex $tmp 0]
 if {$tmpind == $ind} {

 set mm $nn
 set starttime [lindex $tmp 1]
 }
 }

 set reslist($class) [lreplace $reslist($class) $mm $mm]
 lappend freelist($class) $ind

 set tt [$nssim now]
 if {$starttime > $simstart && $tt < $simend} {
 lappend delres($class) [expr $tt-$starttime]
 }

 if {$tt > $simend} {
 $nssim at $tt "$nssim halt"
 }
}

proc start_flow {class} {
 global nssim freelist reslist ftp tcp_s tcp_d rng nof_tcps mfsize
mean_intarrtime simend
 #you have to create the variables tcp_s (tcp source) and tcp_d (tcp
destination)

 set tt [$nssim now]
 set freeflows [llength $freelist($class)]
 set resflows [llength $reslist($class)]

 lappend nlist($class) [list $tt $resflows]

 if {$freeflows == 0} {
 puts "Class $class: At $tt, nof of free TCP sources == 0!!!"

 puts "freelist($class)=$freelist($class)"
 puts "reslist($class)=$reslist($class)"

 exit
 }
 #take the first index from the list of free flows
 set ind [lindex $freelist($class) 0]

 set cur_fsize [expr ceil([$rng exponential $mfsize])]

 $tcp_s($class,$ind) reset
 $tcp_d($class,$ind) reset
 $ftp($class,$ind) produce $cur_fsize

 set freelist($class) [lreplace $freelist($class) 0 0]
 lappend reslist($class) [list $ind $tt $cur_fsize]

 set newarrtime [expr $tt+[$rng exponential $mean_intarrtime]]
 $nssim at $newarrtime "start_flow $class"

 if {$tt > $simend} {
 $nssim at $tt "$nssim halt"
 }

}

set parr_start 0
set pdrops_start 0

proc record_start {} {
 global fmon_bn nssim parr_start pdrops_start nof_classes
 #you have to create the fmon_bn (flow monitor) in the bottleneck link

 set parr_start [$fmon_bn set parrivals_]
 set pdrops_start [$fmon_bn set pdrops_]
 puts "Bottleneck at [$nssim now]: arr=$parr_start, drops=$pdrops_start"
}

set parr_end 0
set pdrops_end 0

proc record_end { } {
 global fmon_bn nssim parr_start pdrops_start nof_classes
 set parr_start [$fmon_bn set parrivals_]
 set pdrops_start [$fmon_bn set pdrops_]
 puts "Bottleneck at [$nssim now]: arr=$parr_start, drops=$pdrops_start"
}

3.2. General simulation parameters

You should use the following general parameters in the configuration for both tasks:

• Queue management – use DropTail both in the bottleneck link and in the access links.
• TCP type – Reno TCP
• TCP’s maximum window size – 1000 (so that it’s big enough!)

o Name of variable in TCL: window_
• TCP’s packet size – 1460 (in bytes)

o Name of variable in TCL: packetSize_
• Starting times of the TCP sources – the starting times of the sources should follow the flow

interarrival time distribution (flow arrivals are from a Poisson process)
• File sizes obey an exponential distribution with mean 500 packets

3.3. Task1

In the first task you will compare the analytical average flow transfer times provided by the
equations in (9) to the corresponding simulated transfer times. In order to fulfil the assumption of
(9) of the equal loss-rates for the different RTT classes, you should use a separate loss-module in the
bottleneck link. The artificial loss-module in ns2 generates losses randomly in the bottleneck link
queue so that each packet entering the queue is dropped with an equal probability p (an example of
introducing a loss module can be found in section A.5, in the appendix)

Use four different RTT classes and set the inter-arrival times of the TCP-flows in each class so that
the theoretical offered load in the bottleneck link at the flow level equals 0.8. This ensures that the
network will not be in a pathological congestion situation. The task is then to compare the results of
the theoretical model to simulated results with different values of the packet loss probability p. In
more detail measure and compare the following:

• Using data from the simulation, give estimates for the mean file transfer times and
throughputs of each class based on applying Eq. (11).

• Include also confidence intervals in your results.

• Plot your results in a graph as a function of p.
• Assume that RTTs for each class consists of only the propagation delays when applying the

DPS model to TCP. Compare the simulated mean delays and throughputs to the theoretical
mean delays and throughputs given by Eq. (9). What can you conclude?

• Compare also the ratios of the performance, i.e., compute Wk/W1, k = 1,…,4, for simulations
and for the theoretical model. What can you conclude as p is varied?

Extra questions: Can you explain the behaviour in the mean delay ratios between the simulations
and model? Hint: think about the impact of queuing. If you want to measure the mean queuing
delay, consider the code given already in redtcpmain.tcl and redtcpsub.tcl (examples from 2nd ns2
lecture) and think how you could configure RED such that RED mechanism is turned “off”. Repeat
the above simulations also for loads 0.7 and 0.9. Do the results change?

3.3.1. Simulation parameters for Task1

In task1, you should additionally use the following topology parameters:

• Access-link bandwidths – 100 Mbps
• Bottleneck-link bandwidth – 10 Mbps
• Access-link delays – The access link delays of the four delay classes should range from 10

ms to 100 ms with 30 ms spacing.
• Bottleneck-link delay – 10 ms
• Queue limits: Use 1000 packets for the bottleneck queue and 1000 packets for the access

queues. The idea is that the packet losses should be caused mainly by the artificial loss
module, not by small queues.

• Flow-level load: 0.8 (you can vary this also if you want to do extra!)
• Packet loss in the loss module: Use six different values for p: [0.1, 0.5, 1, 2, 4, 5] %

Figure 2 The topology for task 1

3.4. Task2

In this task you will perform the same simulations as in task1 but in a larger topology. Now, you
will not add any artificial losses but assign a finite limit for all the buffers, allowing the losses to
occur naturally. Since the analytical results of (9) are only valid for a single-bottleneck case, in
task2 no analytical results are required. You should consider, how the larger topology and “real”

S1

S2

S3

S4

R D

10ms

100ms

10ms

Loss Module

queuing behaviour changes the flow transfer times of different RTT classes compared with the more
controlled setup in task1. You should modify the load level in the bottleneck link in each iteration
step by step and observe what happens to the flow transfer times and flow throughputs of different
RTT classes and to their relations. In more detail, you are expected to:

• Using data from the simulation, give estimates for the mean file transfer times and
throughputs of each class based on applying Eq. (11).

• Include also confidence intervals in your results.
• Plot your results in a graph as a function of the load.
• Comment the behaviour of the system as a function of the load. Compare also the ratios of

the performance, i.e., compute Wk/W1, k = 1,…,4, for different values of the offered load.
What can you conclude from these?

Figure 3 Topology for task 2

3.4.1. Simulation parameters for Task2

In task2, use the following topology parameters:

• Access-link bandwidths – 10 Mbps
• Core-link bandwidth – 100 Mbps
• Bottleneck-link bandwidth – 10 Mbps
• Access-link delays -10 ms
• Core-link delays – The access link delays of the four delay classes should range from 5 ms

to 50 ms with 15 ms spacing.
• Bottleneck-link delay – 30 ms

RTT class1
sources

RTT class2
sources

RTT class3
sources

RTT class4
sources

• Queue limits: Use 100 packets for the access and bottleneck queues and 100 packets for the
core queues.

• Use five different load levels: [0.7, 0.75, 0.8, 0.85, 0.9]

3.5. Handout requirements

The deadline of the exercise is on 31.1.2005 at 16 o’clock. Return the exercise to the following e-
mail address: jmantti3@netlab.hut.fi

The following elements are required in the handout:

• Listing of simulation scripts
• Listing of post processing scripts
• Graphs of the results
• Analysis and comments of the results

3.6. Getting help

Two exercise sessions will be held in computer class B215. The first session will be arranged on
December 3rd at 14-16 and the second session on January 12th at 12-14. In addition, if you have
some questions concerning the exercise, send e-mail to: jmantti3@netlab.hut.fi.

References

[F99] S.Floyd, “Promoting the Use of End-toEnd Congestion Control in the Internet”, IEEE/ACM
TRANSACTIONS ON NETWORKING, VOL. 7, NO.4, AUGUST 1999.

[PFTK98] J.Padhye, V.Firoiu, D.Towsley, J.Kurose, “Modeling TCP Throughput: A Simple
Model and its Empirical Validation”, ACM SIGCOMM 1998.

[APS99] M.Allman, V.Paxson, W.R.Stevens, “TCP Congestion Control”, STD1, RFC 2581, April
1999.

[FM80] G.Fayolle, I.Mitrani, “Sharing a Processor Among Many Job Classes”, Journal of the
Association for Computing Machinery, Vol.27, No.3, July 1980.

[LBMK03] P.Lassila, H. van den Berg, M. Mandjes, R. Kooij, “An integrated packet/flow model
for TCP performance analysis”

A. Appendix

A.1. Installing and using ns2

Ns2 can be built and run both under Unix and Windows. Instructions on how to install ns2 on
Windows can be found at: http://www.isi.edu/nsnam/ns/ns-win32-build.html. However, the
installation may be smoother under Unix.

The exercise sessions are held in computer class B215. However, since ns2 is not installed in the
machines of this class, you should take a remote connection to one of the Linux machines in Maari.
Try for example some of the pharaoh machines in Maari A: http://www.hut.fi/atk/luokat/Maari-
A.html

In order to be able to use ns2, you first have to do the following

• Source the file /p/edu/s-38.180/usens2.csh. This file contains the required settings for
environmental variables. Give this command each time you start an ns2 session in a shell.

Then, to run your simulation script “myscript.tcl”, just write:

ns myscript.tcl

Modifying ns2

In ns2 it is also possible to modify the existing C++ code or create completely new C++ code. After
the changes have been made, the code has to be recompiled by running make in the ns-2.1b9a
directory. However, in this exercise you do not have to (and you are not allowed to!) make any
changes at the C++ level, only at the tcl-level.

A.2. General description

Ns2 is an event driven, object oriented network simulator enabling the simulation of a variety of
local and wide area networks. It implements different network protocols (TCP, UDP), traffic
sources (FTP, web, CBR, Exponential on/off), queue management mechanisms (RED, DropTail),
routing protocols (Dijkstra) etc. Ns2 is written in C++ and Otcl to separate the control and data path
implementations. The simulator supports a class hierarchy in C++ (the compiled hierarchy) and a
corresponding hierarchy within the Otcl interpreter (interpreted hierarchy).

The reason why ns2 uses two languages is that different tasks have different requirements: For
example simulation of protocols requires efficient manipulation of bytes and packet headers making
the run-time speed very important. On the other hand, in network studies where the aim is to vary
some parameters and to quickly examine a number of scenarios the time to change the model and
run it again is more important.

In ns2, C++ is used for detailed protocol implementation and in general for such cases where every
packet of a flow has to be processed. For instance, if you want to implement a new queuing
discipline, then C++ is the language of choice. Otcl, on the other hand, is suitable for configuration
and setup. Otcl runs quite slowly, but it can be changed very quickly making the construction of

simulations easier. In ns2, the compiled C++ objects can be made available to the Otcl interpreter.
In this way, the ready-made C++ objects can be controlled from the OTcl level.

There are quite many understandable tutorials available for new ns-users. By going through, for
example, the following tutorials should give you a rather good view of how to create simple
simulation scenarios with ns2:

http://nile.wpi.edu/NS/
http://www.isi.edu/nsnam/ns/tutorial/index.html

The next chapters will summarise and explain the key features of tcl and ns2, but in case you need
more detailed information, the ns-manual and a class hierarchy by Antoine Clerget are worth
reading:

http://www.isi.edu/nsnam/ns/ns-documentation.html
http://www-sop.inria.fr/rodeo/personnel/Antoine.Clerget/ns/ns/ns-current/HIER.html

Other useful ns2 related links, such as archives of ns2 mailing lists, can be found from ns2
homepage:

http://www.isi.edu/nsnam/ns/index.html

A.3. Otcl basics

This chapter introduces the syntax and the basic commands of the Otcl language used by ns2. It is
important that you understand how Otcl works before moving to the chapters handling the creation
of the actual simulation scenario.

A.3.1. Assigning values to variables

In tcl, values can be stored to variables and these values can be further used in commands:

set a 5
set b [expr $a/5]

In the first line, the variable a is assigned the value “5”. In the second line, the result of the
command [expr $a/5], which equals 1, is then used as an argument to another command, which in
turn assigns a value to the variable b. The “$” sign is used to obtain a value contained in a variable
and square brackets are an indication of a command substitution.

A.3.2. Procedures

You can define new procedures with the proc command. The first argument to proc is the name of
the procedure and the second argument contains the list of the argument names to that procedure.
For instance a procedure that calculates the sum of two numbers can be defined as follows:

proc sum {a b} {
 expr $a + $b

}

The next procedure calculates the factorial of a number:

proc factorial a {
 if {$a <= 1} {
 return 1
}
#here the procedure is called again
expr $x * [factorial [expr $x-1]]}

It is also possible to give an empty string as an argument list. However, in this case the variables
that are used by the procedure have to be defined as global. For instance:

proc sum {} {
 global a b
 expr $a + $b
}

A.3.3. Files and lists

In tcl, a file can be opened for reading with the command:

set testfile [open test.dat r]

The first line of the file can be stored to a list with a command:

gets $testfile list

Now it is possible to obtain the elements of the list with commands (numbering of elements starts
from 0) :

set first [lindex $list 0]
set second [lindex $list 1]

Similarly, a file can be written with a puts command:

set testfile [open test.dat w]
puts $testfile “testi”

A.3.4. Calling subprocesses

The command exec creates a subprocess and waits for it to complete. The use of exec is similar to
giving a command line to a shell program. For instance, to remove a file:

exec rm $testfile

The exec command is particularly useful when one wants to call a tcl-script from within another tcl-
script. For instance, in order to run the tcl-script example.tcl multiple times with the value of the
parameter “test” ranging from 1 to 10, one can type the following lines to another tcl-script:

for {set ind 1} {$ind <= 10} {incr ind} {

 set test $ind
 exec ns example.tcl test
}

A.4. Creating the topology

To be able to run a simulation scenario, a network topology must first be created. In ns2, the
topology consists of a collection of nodes and links.

Before the topology can be set up, a new simulator object must be created at the beginning of the
script with the command:

set ns [new Simulator]

The simulator object has member functions that enable creating the nodes and the links, connecting
agents etc. All these basic functions can be found from the class Simulator. When using functions
belonging to this class, the command begins with “$ns”, since ns was defined to be a handle to the
Simulator object.

A.4.1. Nodes

New node objects can be created with the command

set n0 [$ns node]
set n1 [$ns node]
set n2 [$ns node]
set n3 [$ns node]

The member function of the Simulator class, called “node” creates four nodes and assigns them to
the handles n0, n1, n2 and n3. These handles can later be used when referring to the nodes. If the
node is not a router but an end system, traffic agents (TCP, UDP etc.) and traffic sources (FTP,
CBR etc.) must be set up, i.e, sources need to be attached to the agents and the agents to the nodes,
respectively.

A.4.2. Agents, applications and traffic sources

The most common agents used in ns2 are UDP and TCP agents. In case of a TCP agent, several
types are available. The most common agent types are:

• Agent/TCP – a Tahoe TCP sender
• Agent/TCP/Reno – a Reno TCP sender

• Agent/TCP/Sack1 – TCP with selective acknowledgement

The most common applications and traffic sources provided by ns2 are:

• Application/FTP – produces bulk data that TCP will send
• Application/Traffic/CBR – generates packets with a constant bit rate
• Application/Traffic/Exponential – during off-periods, no traffic is sent. During on-periods,

packets are generated with a constant rate. The length of both on and off-periods is
exponentially distributed.

• Application/Traffic/Trace – Traffic is generated from a trace file, where the sizes and
interarrival times of the packets are defined.

In addition to these ready-made applications, it is possible to generate traffic by using the methods
provided by the class Agent. For example, if one wants to send data over UDP, the method

send(int nbytes)

can be used at the tcl-level provided that the udp-agent is first configured and attached to some
node.

Below is a complete example of how to create a CBR traffic source using UDP as transport protocol
and attach it to node n0:

set udp0 [new Agent/UDP]
$ns attach-agent $n0 $udp0
set cbr0 [new Application/Traffic/CBR]
$cbr0 attach-agent $udp0
$cbr0 set packet_size_ 1000
$udp0 set packet_size_ 1000
$cbr0 set rate_ 1000000

An FTP application using TCP as a transport protocol can be created and attached to node n1 in
much the same way:

set tcp1 [new Agent/TCP]
$ns attach-agent $n1 $tcp1
set ftp1 [new Application/FTP]
$ftp1 attach-agent $tcp1
$tcp1 set packet_size_ 1000

The UDP and TCP classes are both child-classes of the class Agent. With the expressions [new
Agent/TCP] and [new Agent/UDP] the properties of these classes can be combined to the new
objects udp0 and tcp1. These objects are then attached to nodes n0 and n1. Next, the application is
defined and attached to the transport protocol. Finally, the configuration parameters of the traffic
source are set. In case of CBR, the traffic can be defined by parameters rate_ (or equivalently
interval_, determining the interarrival time of the packets), packetSize_ and random_ . With the
random_ parameter it is possible to add some randomness in the interarrival times of the packets.
The default value is 0, meaning that no randomness is added.

A.4.3. Traffic Sinks

If the information flows are to be terminated without processing, the udp and tcp sources have to be
connected with traffic sinks. A TCP sink is defined in the class Agent/TCPSink and an UDP sink is
defined in the class Agent/Null.

A UDP sink can be attached to n2 and connected with udp0 in the following way:

set null [new Agent/Null]
$ns attach-agent $n2 $null
$ns connect $udp0 $null

A standard TCP sink that creates one acknowledgement per a received packet can be attached to n3
and connected with tcp1 with the commands:

set sink [new Agent/Sink]
$ns attach-agent $n3 $sink
$ns connect $tcp1 $sink

There is also a shorter way to define connections between a source and the destination with the
command:

$ns create-connection <srctype> <src> <dsttype> <dst> <pktclass>

For example, to create a standard TCP connection between n1 and n3 with a class ID of 1:

$ns create-connection TCP $n1 TCPSink $n3 1

One can very easily create several tcp-connections by using this command inside a for-loop.

A.4.4. Links

Links are required to complete the topology. In ns2, the output queue of a node is implemented as
part of the link, so when creating links the user also has to define the queue-type.

Figure 4 Link in ns2

n1 n3

Queue Delay TTL

Agent/Null

Simplex Link

Figure 4 shows the construction of a simplex link in ns2. If a duplex-link is created, two simplex-
links will be created, one for each direction. In the link, packet is first enqueued at the queue. After
this, it is either dropped, passed to the Null Agent and freed there, or dequeued and passed to the
Delay object which simulates the link delay. Finally, the TTL (time to live) value is calculated and
updated.

Links can be created with the following command:

$ns duplex/simplex-link endpoint1 endpoint2 bandwidth delay queue-type

For example, to create a duplex-link with DropTail queue management between n0 and n2:

$ns duplex-link $n0 $n2 15Mb 10ms DropTail

Creating a simplex-link with RED queue management between n1 and n3:

$ns simplex-link $n1 $n3 10Mb 5ms RED

The values for bandwidth can be given as a pure number or by using qualifiers k (kilo), M (mega), b
(bit) and B (byte). The delay can also be expressed in the same manner, by using m (milli) and u
(mikro) as qualifiers.

There are several queue management algorithms implemented in ns2, but in this exercise only
DropTail and RED will be needed.

A.5. Adding loss modules

You can create packet losses artificially by adding a separate loss module to a link. The loss module
can be created and configured as follows:

create a random variable that follows the uniform distribution
set loss_random_variable [new RandomVariable/Uniform]
$loss_random_variable set min_ 0 # the range of the random variable;
$loss_random_variable set max_ 100

set loss_module [new ErrorModel] # create the error model;
$loss_module drop-target [new Agent/Null] #a null agent where the dropped packets go to
$loss_module set rate_ 10 # error rate will then be (0.1 = 10 / (100 - 0));
$loss_module ranvar $loss_random_variable # attach the random variable to loss module;

You can attach the loss module to a certain link between two nodes, n1 and n2, with the command:

$ns lossmodel $loss_module $n1 $n2

A.6. Tracing and monitoring

In order to be able to calculate the results from the simulations, the data has to be collected
somehow. Ns2 supports two primary monitoring capabilities: traces and monitors. The traces enable

recording of packets whenever an event such as packet drop or arrival occurs in a queue or a link.
The monitors provide a means for collecting quantities, such as number of packet drops or number
of arrived packets in the queue. The monitor can be used to collect these quantities for all packets or
just for a specified flow (a flow monitor)

A.6.1. Traces

All events from the simulation can be recorded to a file with the following commands:

set trace_all [open all.dat w]
$ns trace-all $trace_all
$ns flush-trace
close $trace_all

First, the output file is opened and a handle is attached to it. Then the events are recorded to the file
specified by the handle. Finally, at the end of the simulation the trace buffer has to be flushed and
the file has to be closed. This is usually done with a separate finish procedure.

If links are created after these commands, additional objects for tracing (EnqT, DeqT, DrpT and
RecvT) will be inserted into them.

Figure 5 Link in ns2 when tracing is enabled

These new objects will then write to a trace file whenever they receive a packet. The format of the
trace file is following:

+ 1.84375 0 2 cbr 210 ------- 0 0.0 3.1 225 610
- 1.84375 0 2 cbr 210 ------- 0 0.0 3.1 225 610
r 1.84471 2 1 cbr 210 ------- 1 3.0 1.0 195 600
r 1.84566 2 0 ack 40 ------- 2 3.2 0.1 82 602
+ 1.84566 0 2 tcp 1000 ------- 2 0.1 3.2 102 611
- 1.84566 0 2 tcp 1000 ------- 2 0.1 3.2 102 611

+ : enqueue
- : dequeue
d : drop
r : receive

The fields in the trace file are: type of the event, simulation time when the event occurred, source
and destination nodes, packet type (protocol, action or traffic source), packet size, flags, flow id,
source and destination addresses, sequence number and packet id.

Queue Delay TTL

Agent/Null

EnqT DeqT

DrpT

RecvT

In addition to tracing all events of the simulation, it is also possible to create a trace object between
a particular source and a destination with the command:

$ns create-trace type file src dest

where the type can be, for instance,

• Enque – a packet arrival (for instance at a queue)
• Deque – a packet departure (for instance at a queue)
• Drop – packet drop
• Recv – packet receive at the destination

Tracing all events from a simulation to a specific file and then calculating the desired quantities
from this file for instance by using perl or awk and Matlab is an easy way and suitable when the
topology is relatively simple and the number of sources is limited. However, with complex
topologies and many sources this way of collecting data can become too slow. The trace files will
also consume a significant amount of disk space.

A.6.2. Monitors

With a queue monitor it is possible to track the statistics of arrivals, departures and drops in either
bytes or packets. Optionally the queue monitor can also keep an integral of the queue size over
time.

For instance, if there is a link between nodes n0 and n1, the queue monitor can be set up as follows:

set qmon0 [$ns monitor-queue $n0 $n1]

The packet arrivals and byte drops can be tracked with the commands:

set parr [$qmon0 set parrivals_]
set bdrop [$qmon0 set bdrops_]

Notice that besides assigning a value to a variable the set command can also be used to get the value
of a variable. For example here the set command is used to get the value of the variable “parrivals”
defined in the queue monitor class.

A flow monitor is similar to the queue monitor but it keeps track of the statistics for a flow rather
than for aggregated traffic. A classifier first determines which flow the packet belongs to and then
passes the packet to the flow monitor.

The flowmonitor can be created and attached to a particular link with the commands:

set fmon [$ns makeflowmon Fid]
$ns attach-fmon [$ns link $n1 $n3] $fmon

Notice that since these commands are related to the creation of the flow-monitor, the commands are
defined in the Simulator class, not in the Flowmonitor class. The variables and commands in the

Flowmonitor class can be used after the monitor is created and attached to a link. For instance, to
dump the contents of the flowmonitor (all flows):

$fmon dump

If you want to track the statistics for a particular flow, a classifier must be defined so that it selects
the flow based on its flow id, which could be for instance 1:

set fclassifier [$fmon classifier]
set flow [$fclassifier lookup auto 0 0 1]

In this exercise all relevant data concerning packet arrivals, departures and drops should be obtained
by using monitors. If you want to use traces, then at least do not trace all events of the simulation,
since it would be highly unnecessary. However, it is still recommended to use the monitors, since
with the monitors you will directly get the total amount of events during a specified time interval,
whereas with traces you will have to parse the output file to get these quantities.

A.7. Controlling the simulation

After the simulation topology is created, agents are configured etc., the start and stop of the
simulation and other events have to be scheduled.

The simulation can be started and stopped with the commands

$ns at $simtime “finish”
$ns run

The first command schedules the procedure finish at the end of the simulation, and the second
command actually starts the simulation. The finish procedure has to be defined to flush the trace
buffer, close the trace files and terminate the program with the exit routine. It can optionally start
NAM (a graphical network animator), post process information and plot this information.

The finish procedure has to contain at least the following elements

proc finish {} {
 global ns trace_all
 $ns flush-trace
 close $trace_all
 exit 0
}

Other events, such as the starting or stopping times of the clients can be scheduled in the following
way:

$ns at 0.0 “cbr0 start”
$ns at 50.0 “ftp1start”
$ns at $simtime “cbr0 stop”
$ns at $simtime “ftp1 stop”

 n0 n2 n1

3 Mbps
1 ms

5 Mbps
15 ms

If you have defined your own procedures, you can also schedule the procedure to start for example
every 5 seconds in the following way:

proc example {} {
 global ns
 set interval 5
 ….
 …
 $ns at [expr $now + $interval] “example”
}

A.8. Simple ns2 example

To give you a better idea of how these pieces can be put together, a very simple example script is
given here. The script in itself does not do anything meaningful, the purpose is just to show you
how to construct a simulation.

The script first creates the topology shown in Figure 6 and then adds one CBR traffic source using
UDP as transport protocol and records all the events of the simulation to a trace file.

Figure 6 Example simulation topology

The example script:

#Creation of the simulator object
set ns [new Simulator]

#Enabling tracing of all events of the simulation
set f [open out.all w]
$ns trace-all $f

#Defining a finish procedure

proc finish {} {
 global ns f
 $ns flush-trace
 close $f
 exit0
}

#Creation of the nodes
set n0 [$ns node]
set n1 [$ns node]
set n2 [$ns node]

#Creation of the links
$ns duplex-link $n0 $n1 3Mb 1ms DropTail
$ns duplex-link $n0 $n1 1Mb 15ms DropTail

#Creation of a cbr-connection using UDP
set udp0 [new Agent/UDP]
$ns attach-agent $n0 $udp0
set cbr0 [new Application/Traffic/CBR]
$cbr0 attach-agent $udp0
$cbr0 set packet_size_ 1000
$udp0 set packet_size_ 1000
$cbr0 set rate_ 1000000
$udp0 set class_ 0

set null0 [new Agent/Null]
$ns attach-agent $n2 $null0
$ns connect $udp0 $null0

#Scheduling the events
$ns at 0.0 “$cbr0 start”
$ns at $simtime “$cbr0 stop”

$ns at $simtime “finish”

$ns run

