
29.11.2004 1

S-38.148 Simulation of data networks / ns2

NS2: Contents

• NS2 – Introduction to NS2 simulator

• Some NS2 examples

• NS2 project work instructions

29.11.2004 2

S-38.148 Simulation of data networks / ns2

Internet and TCP

• Internet (currently) offers only best effort service
– packets are delayed
– packets are lost
– packets are misordered

• TCP: end-to-end reliable byte stream
– window based flow control

• each received packet is acknowledged
• lost packets are retransmitted

– window size, w, defines an upper bound on number of unacknowledged packets
• during one round trip time, RTT, at most w packets can be sent
• thus, sending rate ~ w/RTT

NET1 NET2 NETn

HTTPFTP

TCP UDP

IP

NV TFTP

L1

L2

L3

L4

29.11.2004 3

S-38.148 Simulation of data networks / ns2

Internet congestion control

• Original TCP
– sender starts sending immediately with max window size that receiver’s buffers allow
– works as long as network only lightly loaded (users not able to overload network)
– early 1980’s: series of “congestion collapses”

• during overload network is only carrying retransmitted packets and (almost) no
fresh offered traffic ⇒ need for congestion control

• TCP congestion control principles
– idea: modify window size adaptively based on “available capacity”

• assumption: packet losses caused by congested buffers (not bit errors)
– TCP is an adaptive system with feedback in form of packet losses

• losses interpreted as indications of congestion and are detected through timeouts
(slow response) and so called duplicate ACKs

• delayed feedback due to RTTs
– congestion control implemented by following algorithms

• slow start, additive increase-multiplicative decrease (AIMD), fast retransmit, fast
recovery

29.11.2004 4

S-38.148 Simulation of data networks / ns2

• Slow start
– window increased exponentially until packet loss occurs (loss event means that

network capacity has been reached) or to reach congestion avoidance threshold

• AIMD
– after reaching threshold (window size just before loss/2) switch to linear increase

(congestion avoidance)

• Fast retransmit
– detect loss from duplicate ACKs, eliminates TO periods

TCP Tahoe

TO loss

time

se
nd

in
g

ra
te

ACK loss

TO loss ACK loss

TO period TO period

29.11.2004 5

S-38.148 Simulation of data networks / ns2

TCP Reno

• Fast recovery
– assume large window sizes and a large bandwidth-delay product

– if one packet is lost, other ACKs are still received ⇒ use these to resend lost packet
(fast recovery) and new packets

– after loss, start directly from AIMD threshold, i.e., w/2 (multiplicative decrese), and
continue with linear increase (AIMD, congestion avoidance)

– ⇒ eliminates slow starts for duplicate ACK losses

TO loss

time

se
nd

in
g

ra
te

3 x ACK loss

TO loss 3 x ACK loss

TO period TO period

29.11.2004 6

S-38.148 Simulation of data networks / ns2

TCP performance: greedy flows

• TCP throughput influenced by packet loss and RTT, but how?
• Simple models:

– Floyd’s deterministic model
• window grows linearly from w/2 to w and after reaching w, packet is lost

packets sent / lost packet

– Doing the analysis more carefully ⇒ Padhye’s equation

• Includes impact of timeouts

pRTTRTT

w
rate

w
p

ww
ww

⋅
⋅==⇒=⇒

≈++++⇒

1
3
8

3
8

8
3

)1
2

(
2

2

2�

()

+

+

≈
2

0

max

321
8

3
3,1min

3

2

1
,min)(

pp
bp

T
bp

RTT
RTT

W
pT

29.11.2004 7

S-38.148 Simulation of data networks / ns2

TCP performance: flow level model (1)

• In reality TCP flows come and go randomly…

• DPS (Discriminatory Proseccor Sharing)
– consider a processor sharing system where we have M classes of jobs
– class-k jobs arrive according to a Poisson process with rate λk

– class-k jobs require an exponentially distributed amount of time with mean 1/µk

– class-k jobs have a weight gk and jobs share the processor in a weighted manner such
that the fraction of the processor allocated to class-k jobs equals

– then the mean class-k delay can be solved from the system of linear equations

Mk

g

g

W

g

g
W

k

M

j

j

k
kj

jj
M

j

j

k
kj

j
k ,...,2,1,

1
1

11

==
+

−

+
− ∑∑

== µµµ

λ

µµ

λ

∑
=

M

j
jj

k

Ng

g

1

29.11.2004 8

S-38.148 Simulation of data networks / ns2

TCP performance: flow level model (2)

• Assuming that throughput of a TCP flow in class k can be approximated by

, the ratio gi/gj becomes

• Observe that for a given TCP sender, the RTTs are random
– simplest approximation for class-k RTT is to assume it consists of only the propagation

delays (remember that RTT means by definition the total delay in both directions)
– this is more accurate the less the random queuing delays impact the RTT

• Other parameters
– flow arrival rate equals λk ����������	�
���	���k equals B/C, where B is the mean file

size (file sizes are assumed to be exponentially distributed) and C is the bottleneck bw

• Throughput of a class-k flow, denoted by Tk, is by definition the mean file size
divided by the average class-k transfer time, i.e.,

()pRTTc k */

i

j

j

i

RTT

RTT

g

g
=

k
k W

B
T =

29.11.2004 9

S-38.148 Simulation of data networks / ns2

The ns2 assignment

• We perform flow level simulations of TCP
– event scheduling handled from Otcl level
– scheduling concerns arrival and departure of flows
– a skeleton code for handling this is given

• Your task is to…
– create the topology,
– implement the main program for controlling the simulation,
– implement the final computation of performance statistics

• We consider two scenarios
– Task1 & Task2

29.11.2004 10

S-38.148 Simulation of data networks / ns2

Some hints for programming…

• Creating an array of TCPs
– you can create an array in TCL without declaring it first
– example: creating 10 TCPs, configuring them and storing them in the array tcp()

for {set nn 0} {$nn < 10} {incr nn} {
set tcp_s($nn) [new Agent/TCP/Reno]

$tcp_s($nn) set packetSize_ 1460
$tcp_s($nn) set window_ 1000
$tcp_s($nn) set fid_ $nn
. . .

}

– multidimensional arrays: for example tcp-agent in class 2 and id 3 = $tcp_s(2,3)

• Accessing lists
– lists can be initialized easily
– operations for lists: llength (length of the list), lindex (pick element at index from the

list), lappend (insert element), lreplace (search and replace)
– Example:

set a {1 2 3 4}
set b [lindex $a 1] (=> b = 2, indexing starts from 0)

lappend $a 5 (=> a = {1 2 3 4 5})

