10. Network planning and dimensioning

Literature

1. A. Olsson, ed. (1997)
 - “Understanding Telecommunications 1”
 - Studentlitteratur, Lund, Sweden

2. A. Girard (1990)
 - “Routing and Dimensioning in Circuit-Switched Networks”
 - Addison-Wesley, Reading, MA
• A simple model of a telecommunication network consists of
 – nodes
 • terminals
 • network nodes
 – links between nodes
• Access network
 – connects the terminals to the network nodes
• Trunk network
 – connects the network nodes to each other
Why network planning and dimensioning?

• “The purpose of dimensioning of a telecommunications network is to ensure that the expected needs will be met in an economical way both for subscribers and operators.”

Source: [1]
10. Network planning and dimensioning

Network planning in a stable environment (1)

• Traditional planning situation:

Business planning

Long and medium term network planning

Short term network planning

Operation and maintenance

Source: [1]

10. Network planning and dimensioning

Network planning in a stable environment (2)

• Traffic aspects
 – Data collection (current status)
 • traffic measurements
 • subscriber amounts and distribution
 – Forecasting
 • service scenarios
 • traffic volumes and profiles

• Economical aspects
• Technical aspects
• Network optimisation and dimensioning
 – hierarchical structure and topology
 – traffic routing and dimensioning
 – circuit routing
Traditional planning process by Girard (1)

- As with any decision process, network planning relies on **external information**
 - Forecast of demand for services over some planning horizon
 - Economic information concerning the cost structure of the network elements and maintenance
 - Knowledge about the technical capabilities of the available systems

- The planning problem can now be stated as follows:
 - to implement the first four layers of the OSI model
 - to provide the required physical support

Source: [2]

Traditional planning process by Girard (2)

- Assuming that all the protocol issues have been settled and the transmission technology is known, what remains is a complex, distributed and dynamic capacity-augmentation problem
 - only feasible solution approach: decomposition and iteration

- Stages of the planning process:
 - Topological design
 - Network-synthesis problem
 - Traffic routing
 - Dimensioning
 - Network-realization (circuit-routing) problem

- These four stages are interrelated
 ⇒ the planning process is **iterative** (at many levels)

- Different **planning horizons** at various stages

Source: [2]
10. Network planning and dimensioning

Planning process for dimensioning circuit switched networks by Girard

Traditional planning process by Girard (3)

- Topological design:
 - Determine where to place components and how to interconnect them
 - By methods of **topological optimization** and **graph theory**
 - Input:
 - information about transmission network summarized into a fixed interconnection cost per unit length between offices
 - switch costs depending just on the switching technology
 - Output:
 - connectivity matrix
 - optimal location of switches or concentrators (optionally)

Source: [2]
10. Network planning and dimensioning

Traditional planning process by Girard (4)

- Network synthesis:
 - Calculate the optimal size of the components (that is: the transmission and switching systems) within the topology specified and subject to GoS constraints on network-performance measures
 - By methods of **nonlinear optimization**
 - Input:
 - topology, traffic matrices, GoS constraints, cost function (unit cost)
 - Output:
 - route plan
 - set of logical links between the nodes (that is: requirements for transmission facilities betw. switching points)
 - Comprises of two iterated substages:
 - Traffic routing
 - Dimensioning
 - Specific to telecommunications!

Source: [2]

10. Network planning and dimensioning

Traditional planning process by Girard (5)

- Traffic routing:
 - Determine how to connect calls as they arrive, given the topology and size of the components

- Dimensioning:
 - Determine the size of the components subject to GoS constraints and given the topology and a routing method

Source: [2]
10. Network planning and dimensioning

Traditional planning process by Girard (6)

- Network realization:
 - Determine how to implement the capacity requirement (for transmission and switching equipments) using the available components and taking further into account reliability (⇒ multipath routing)
 - By methods of **multicommodity flow optimization**
 - Input:
 - logical-circuit demand
 - fixed costs, module costs and reliability of available components
 - other reliability requirements
 - Output:
 - physical circuits plan
 - detailed information of actual transmission cost between nodes

Source: [2]

Network planning in a turbulent environment (1)

- Additional decision data are needed from the following areas:
 - The market, with regard to a specific business concept
 - due to competition!
 - operator’s future role (niche): dominance/co-operation
 - Customer demands:
 - new services: Internet & mobility (first of all)
 - new business opportunities
 - Technology:
 - new technology: ATM, xDSL, GSM, CDMA, WDM
 - Standards:
 - new standards issued continuously
 - Operations and network planning support:
 - new computer-aided means
 - Costs:
 - trends: equipment costs going down, staff costs going up

Source: [1]
10. Network planning and dimensioning

Network planning in a turbulent environment (2)

- Safeguards for the operator:
 - Change the network architecture so that it will be more open, with generic platforms, if possible
 - Build the network with a certain prognosticated overcapacity (redundancy) in generic parts where the marginal costs are low

- New planning situation (shift of focus to a strategic-tactical approach):

 Business planning; Strategic-tactical planning of network resources for **flexible use**

 Business-driven, dynamic network management for **optimal use** of network resources

Source: [1]
Need for traffic measurements and forecasts

• To properly dimension the network we need to estimate the traffic offered

• If the network is already operating,
 – the current traffic is most precisely estimated by making traffic measurements

• Otherwise, the estimation should be based on other information, e.g.
 – estimations on characteristic traffic generated by a subscriber
 – estimations on the number of subscribers

• Long time-span of network investments ⇒
 – it is not enough to estimate only the current traffic
 – forecasts of future traffic are also needed
10. Network planning and dimensioning

Traffic forecasting

- Information about future demands for telecommunications
 - an estimation of future tendency or direction
- Purpose
 - provide a basis for decisions on investments in network
- Forecast periods
 - time aspect important (reliability)
 - need for forecast periods of different lengths

Source: [1]
10. Network planning and dimensioning

Forecasting methods

- **Trend methods**
 - linear extrapolation
 - nr of subscribers increased yearly by about 200 in the past 5 years
 \[\Rightarrow 3 \times 200 = 600 \] new subscribers in the next 3-year period
 - not suitable if growth is exponential
- **Statistical demand analysis**
 - network operator seeks to map out those factors that underlie the earlier development
 - changes that can be expected during the forecasting period are then collated
- **Assessment methods**
 - analogy method: situations or objects with similar preconditions will develop similarly

Source: [1]

10. Network planning and dimensioning

Traffic forecast

- **Traffic forecast defines**
 - the estimated traffic growth in the network over the planning period
- **Starting point**:
 - current traffic volume during busy hour (measured/estimated)
- **Other affecting factors**:
 - changes in the number of subscribers
 - change in traffic per subscriber (characteristic traffic)
- **Final result (that is, the forecast)**:
 - **traffic matrix** describing the traffic interest between exchanges (traffic areas)
10. Network planning and dimensioning

Traffic matrix

- The final result of the traffic forecast is given by a **traffic matrix**
- Traffic matrix \(T = (T(i,j)) \)
 - describes traffic interest between exchanges
 - \(N^2 \) elements (\(N = \) nr of exchanges)
 - element \(T(i,i) \) tells the estimated traffic within exchange \(i \)
 - element \(T(i,j) \) tells the estimated traffic from exchange \(i \) to exchange \(j \)
- **Problem:**
 - easily grows too big: 600 exchanges \(\Rightarrow 360,000 \) elements!
- **Solution:** hierarchical representation
 - higher level: traffic between traffic areas
 - lower level: traffic between exchanges within one traffic area

10. Network planning and dimensioning

Example (1)

- **Data:**
 - There are 1000 private subscribers and 10 companies with their own PBX’s in the area of a local exchange.
 - The characteristic traffic generated by a private subscriber and a company are estimated to be 0.025 erlang and 0.200 erlang, respectively.
- **Questions:**
 - What is the total traffic intensity \(a \) generated by all these subscribers?
 - What is the call arrival rate \(\lambda \) assumed that the mean holding time is 3 minutes?
- **Answers:**
 - \(a = 1000 \times 0.025 + 10 \times 0.200 = 25 + 2 = 27 \) erlangs
 - \(h = 3 \) min
 - \(\lambda = a/h = 27/3 \) calls/min = 9 calls/min
Example (2)

- **Data:**
 - In a 5-year forecasting period the number of new subscribers is estimated to grow linearly with rate 100 subscribers/year.
 - The characteristic traffic generated by a private subscriber is assumed to grow to value 0.040 erlang.
 - The total nr of companies with their own PBX is estimated to be 20 at the end of the forecasting period.

- **Question:**
 - What is the estimated total traffic intensity a at the end of the forecasting period?

- **Answer:**
 - $a = (1000 + 5\times100) \times 0.040 + 20 \times 0.200 = 60 + 4 = 64$ erlangs

Example (3)

- **Data:**
 - Assume that there are three similar local exchanges.
 - Assume further that one half of the traffic generated by a local exchange is local traffic and the other half is directed uniformly to the two other exchanges.

- **Question:**
 - Construct the traffic matrix T describing the traffic interest between the exchanges at the end of the forecasting period.

- **Answer:**
 - $T(i,i) = 64/2 = 32$ erlangs
 - $T(i,j) = 64/4 = 16$ erlangs

$$
\begin{array}{|c|c|c|c|}
\hline
\text{area} & 1 & 2 & 3 & \text{sum} \\
\hline
1 & 32 & 16 & 16 & 64 \\
\hline
2 & 16 & 32 & 16 & 64 \\
\hline
3 & 16 & 16 & 32 & 64 \\
\hline
\text{sum} & 64 & 64 & 64 & 192 \\
\hline
\end{array}
$$
Determine the minimum \textbf{system capacity} needed in order that the incoming \textbf{traffic} meet the specified \textbf{grade of service}.
10. Network planning and dimensioning

Traffic dimensioning (2)

- Observation:
 - Traffic is varying in time
- General rule:
 - Dimensioning should be based on peak traffic not on average traffic
- However,
 - Revenues are based on average traffic
- For dimensioning (of telephone networks),
 peak traffic is defined via the concept of busy hour:

Busy hour ≈ the continuous 1-hour period for which the traffic volume is greatest

10. Network planning and dimensioning

Telephone network model

- Simple model of a telephone network consists of
 - network nodes (exchanges)
 - links between nodes
- Traffic consists of **calls**
- Each call has two phases
 - first, the connection has to set up through the network (**call establishment** phase)
 - only after that, the information transfer is possible (**information transfer** phase)
Two kinds of traffic processes

- Traffic process in each network node
 - due to call establishments
 - during the call establishment phase
 - each call needs (and competes for) processing resources in each network node (switch) along its route
 - it typically takes some seconds (during which the call is processed in the switches, say, some milliseconds)
- Traffic process in each link
 - due to information transfer
 - during the information transfer phase
 - each call occupies one channel on each link along its route
 - information transfer lasts as long as one of the participants disconnects
 - ordinary telephone calls typically hold some minutes
- Note: totally different time scales of the two processes

Simplified traffic dimensioning in a telephone network

- Assume
 - fixed topology and routing
 - given traffic matrix
 - given GoS requirements
- Dimensioning of network nodes: Determine the required call handling capacity
 - max number of call establishments the node can handle in a time unit
- Dimensioning of links: Determine the required number of channels
 - max number of ongoing calls on the link
Traffic process during call establishment (1)

Traffic process during call establishment (2)

- Call (request) arrival process is modelled as
 - a Poisson process with intensity λ
- Further we assume that call processing times are
 - IID and exponentially distributed with mean s
 - typically s is in the range of **milliseconds** (not minutes as h)
 - s is more a **system parameter** than a traffic parameter
- Finally we assume that the call requests are processed by
 - a single processor with an infinite buffer
- The resulting traffic process model is
 - the **M/M/1 queueing model** with traffic load $\rho = \lambda s$
Traffic process during call establishment (3)

- Pure delay system ⇒

Grade of Service measure = Mean waiting time $E[W]$

- Formula for the mean waiting time $E[W]$ (assuming that $\rho < 1$):

$$E[W] = s \cdot \frac{\rho}{1-\rho}$$

- $\rho = \lambda s$
- **Note**: $E[W]$ grows to infinity as ρ tends to 1

Dimensioning curve

- Grade of Service requirement: $E[W] \leq s$
 ⇒ Allowed load $\rho \leq 0.5 = 50\% \Rightarrow \lambda s \leq 0.5$
 ⇒ Required service rate $1/s \geq 2\lambda$
Dimensioning rule

- To get the required Grade of Service (the average time a customer waits before service should be less than the average service time) …

... Keep the traffic load less than 50%

- If you want a less stringent requirement, still remember the **safety margin** …

Don’t let the total traffic load approach to 100%

- Otherwise you’ll see an explosion!

Example (1)

Assumptions:
- 3 local exchanges completely connected to each other
- Traffic matrix T describing the busy hour traffic interest (in erlangs) given below
- Fixed (direct) routing: calls are routed along shortest paths.
- Mean holding time $h = 3$ min.

Task:
- Determine the call handling capacity needed in different network nodes according to the GoS requirement $\rho < 50\%$
Example (2)

- **Node 1:**
 - call requests from own area:
 \[\frac{T(1,1) + T(1,2) + T(1,3)}{h} = \frac{90}{3} = 30 \text{ calls/min} \]
 - call requests from area 2:
 \[T(2,1) = \frac{30}{3} = 10 \text{ calls/min} \]
 - call requests from area 3:
 \[T(3,1) = \frac{30}{3} = 10 \text{ calls/min} \]
 - total call request arrival rate:
 \[\lambda(1) = 30 + 10 + 10 = 50 \text{ calls/min} \]
 - required call handling capacity:
 \[\rho(1) = \frac{\lambda(1)}{\mu(1)} = 0.5 \Rightarrow \mu(1) = 2 \times \lambda(1) = 100 \text{ calls/min} \]

<table>
<thead>
<tr>
<th>area</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>60</td>
<td>15</td>
<td>15</td>
<td>90</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>30</td>
<td>15</td>
<td>75</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>15</td>
<td>30</td>
<td>75</td>
</tr>
<tr>
<td>sum</td>
<td>120</td>
<td>60</td>
<td>60</td>
<td>240</td>
</tr>
</tbody>
</table>

Example (3)

- **Node 2:**
 - total call request arrival rate:
 \[\lambda(2) = \frac{T(2,1) + T(2,2) + T(2,3) + T(1,2) + T(3,2)}{h} = \frac{75 + 15 + 15}{3} = 35 \text{ calls/min} \]
 - required call handling capacity:
 \[\mu(2) = 2 \times \lambda(2) = 70 \text{ calls/min} \]

- **Node 3:**
 - total call request arrival rate:
 \[\lambda(3) = \frac{T(3,1) + T(3,2) + T(3,3) + T(1,3) + T(2,3)}{h} = \frac{75 + 15 + 15}{3} = 35 \text{ calls/min} \]
 - required call handling capacity:
 \[\mu(3) = 2 \times \lambda(3) = 70 \text{ calls/min} \]
Traffic process during information transfer (1)

Traffic process during information transfer (2)

- Call arrival process has already been modelled as
 - a Poisson process with intensity λ
- Further we assume that call holding times are
 - IID and generally distributed with mean h
 - typically h is in the range of minutes (not milliseconds as s)
 - h is more a traffic parameter than a system parameter
- The resulting traffic process model is
 - the M/G/n/n loss model with (offered) traffic intensity $a = \lambda h$
Traffic process during information transfer (3)

- Pure loss system ⇒

Grade of Service measure = Call blocking probability B

- Erlang’s blocking formula:

$$B = \text{Erl}(n, a) = \frac{a^n}{n!} \sum_{i=0}^{n} \frac{a^i}{i!}$$

- $a = \lambda h$
- $n! = n(n - 1)(n - 2) \ldots 1$

10. Network planning and dimensioning

Dimensioning curve

- Grade of Service requirement: $B \leq 1\%$
 ⇒ Required link capacity: $n = \min\{i = 1, 2, \ldots \mid \text{Erl}(i, a) \leq B\}$
10. Network planning and dimensioning

Example (1)

- **Assumptions:**
 - 3 local exchanges completely connected to each other with two-way links
 - Traffic matrix T describing the busy hour traffic interest (in erlangs) given below
 - Fixed (direct) routing: calls are routed along shortest paths.
 - Mean holding time $h = 3$ min.

<table>
<thead>
<tr>
<th>area</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>60</td>
<td>15</td>
<td>15</td>
<td>90</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>30</td>
<td>15</td>
<td>75</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>15</td>
<td>30</td>
<td>75</td>
</tr>
<tr>
<td>sum</td>
<td>120</td>
<td>60</td>
<td>60</td>
<td>240</td>
</tr>
</tbody>
</table>

- **Task:**
 - Dimension trunk network links according to the GoS requirement $B < 1\%$

Example (2)

- **Link 1-2** (betw. nodes 1 and 2):
 - total offered traffic: $a(1-2) = T(1,2) + T(2,1)$
 $= 15 + 30 = 45$ erlang
 - required capacity: $n(1-2) = \min\{i \mid \text{Erl}(i, 45) < 1\%\}$
 $\Rightarrow n(1-2) = 58$ channels

<table>
<thead>
<tr>
<th>area</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>60</td>
<td>15</td>
<td>15</td>
<td>90</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>30</td>
<td>15</td>
<td>75</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>15</td>
<td>30</td>
<td>75</td>
</tr>
<tr>
<td>sum</td>
<td>120</td>
<td>60</td>
<td>60</td>
<td>240</td>
</tr>
</tbody>
</table>

- **Link 1-3**:
 - required capacity: $n(1-3) = \min\{i \mid \text{Erl}(i, 45) < 1\%\}$
 $\Rightarrow n(1-3) = 58$ channels

- **Link 2-3**:
 - required capacity: $n(2-3) = \min\{i \mid \text{Erl}(i, 30) < 1\%\}$
 $\Rightarrow n(2-3) = 42$ channels
10. Network planning and dimensioning

Table: $B = \text{Erl}(n,a)$

- **$B = 1\%$**
 - n: a:
 - 35 channels: 24.64 erlang
 - 36 channels: 25.51 erlang
 - 37 channels: 26.38 erlang
 - 38 channels: 27.26 erlang
 - 39 channels: 28.13 erlang
 - 40 channels: 29.01 erlang
 - 41 channels: 29.89 erlang
 - 42 channels: 30.78 erlang
 - 43 channels: 31.66 erlang
 - 44 channels: 32.55 erlang
 - 45 channels: 33.44 erlang

- **$B = 1\%$**
 - n: a:
 - 50 channels: 37.91 erlang
 - 51 channels: 38.81 erlang
 - 52 channels: 39.71 erlang
 - 53 channels: 40.61 erlang
 - 54 channels: 41.51 erlang
 - 55 channels: 42.41 erlang
 - 56 channels: 43.32 erlang
 - 57 channels: 44.23 erlang
 - 58 channels: 45.13 erlang
 - 59 channels: 46.04 erlang
 - 60 channels: 46.95 erlang

10. Network planning and dimensioning

End-to-end blocking probability

- Thus far we have concentrated on the single link case, when calculating the call blocking probability B_c.
- However, there can be many (trunk network) links along the route of a (long distance) call. In this case it is more interesting to calculate the total end-to-end blocking probability B_e experienced by the call. A method (called Product Bound) to calculate B_e is given below.
- Consider a call traversing through links $j = 1, 2, \ldots, J$. Denote by $B_c(j)$ the blocking probability experienced by the call in each single link j. Then

$$B_e = 1 - (1 - B_c(1))*(1 - B_c(2)) \ldots *(1 - B_c(J))$$

$B_c(j)$’s small $\Rightarrow B_e \approx B_c(1) + B_c(2) + \ldots + B_c(J)$
10. Network planning and dimensioning

Example

- The call from A to B is traversing through trunk network links 1 and 2
- Let $B_c(1)$ and $B_c(2)$ denote the call blocking probability in these links
- Product Bound (PB):
 \[B_e = 1 - (1 - B_c(1))(1 - B_c(2)) = B_c(1) + B_c(2) - B_c(1)B_c(2) \]
- Approximately:
 \[B_e \approx B_c(1) + B_c(2) \]