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9. Simulation

What is it?

• Simulation is (at least from the teletraffic point of view)
a statistical method to estimate the performance
(or some other important characteristic)
of the system under consideration.

• It typically consists of the following four phases:
– Modelling of the system (real or imaginary) as a dynamic stochastic process

– Generation of the realizations of this stochastic process (“observations”)
• Such realizations are called simulation runs

– Collection of data (“measurements”)

– Statistical analysis of the gathered data, and drawing of the conclusions
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Alternative to what?

• In previous lectures, we have got familiar with an alternative way to
determine the performance: mathematical analysis

• It includes only the following two phases:
– Modelling of the system as a stochastic process.

(In this course, we have restricted ourselves to birth-death processes)

– Solving of the model by means of mathematical analysis

• The modelling phase is common to both of them

• However, the accuracy (faithfulness) of the model that these methods
allow can be very different

– unlike simulation, mathematical analysis typically requires (heavily)
restrictive assumptions to be made
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Performance analysis of a teletraffic system
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Analysis vs. simulation (1)

• Pros of analysis
– Results produced rapidly (after the analysis is made)

– Exact (accurate) results (for the model)
– Gives insight

– Optimization possible (but typically hard)

• Cons of analysis
– Requires restrictive assumptions

⇒ the resulting model is typically too simple
(not capturing all essential features of the system under consideration)

⇒ performance analysis of complicated systems impossible

– Even under these assumptions, the analysis itself may be (extremely) hard
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Analysis vs. simulation (2)

• Pros of simulation
– No restrictive assumptions needed (in principle)

⇒ performance analysis of complicated systems possible

– Modelling straightforward

• Cons of simulation
– Production of results time-consuming

(simulation programs being typically processor intensive)
– Results inaccurate (however, they can be made as accurate as required by

increasing the number of simulation runs, but this takes even more time)
– Gives not much insight (?)

– Optimization possible only between very few alternatives (parameter
combinations or controls)
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Simulation of a stochastic process

• Modelling of the system as a stochastic process
– This has already been discussed in this course.

– In the sequel, we will take the model (that is: the stochastic process) for
granted. In addition, we will restrict ourselves to simple teletraffic models.

• Generation of the realizations of this stochastic process
– Generation of random numbers

– Construction of the realization of the process from event to event
(discrete event simulation)

• Collection of data
– Transient phase vs. steady state (stationarity, equilibrium)

• Statistical analysis and conclusions
– Point estimators

– Confidence intervals
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Implementation

• Simulation is typically implemented as a computer program

• Simulation program generally comprises the following phases
(excluding modelling and conclusions)

– Generation of the realizations of the stochastic process

– Collection of data
– Statistical analysis of the gathered data

• Simulation program can be implemented by
– a general-purpose programming language, e.g. C or C++

• most flexible, but tedious and prone to programming errors

– utilizing simulation-specific program libraries, e.g. CNCL

– utilizing simulation-specific software, e.g. OPNET
• most rapid and reliable (depending on s/w), but rigid
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Simulation types

• What we have described above, is
– discrete (event-based), dynamic (evolving in time) and stochastic

(random components) simulation

• This is called discrete event simulation
– This is also what we will consider later on in this lecture

• Other types:
– continuous simulation: state and parameter spaces of the process are

continuous; description of the system typically by differential equations,
e.g. simulation of the trajectory of an aircraft

– static simulation: time plays no role, e.g. numerical integration of a multi-
dimensional integral by Monte Carlo method

– deterministic simulation: no random components, e.g. the first example
above
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Generation of the realizations of the traffic process

• Assume that the modelling part of simulation has been done
– So the stochastic process describing the evolution of the system is known

• Next step is to generate realizations of this process.
– For this, we have to:

• Generate a realization (value) for all the random variables affecting the
evolution of the process (taking properly into account all the (statistical)
dependencies between these variables)

• Using these generated values, construct the realization of the process
– These two parts are overlapping (thus, anything else but sequential)

– Realizations for random variables are generated by utilizing
(pseudo ) random number generators

– The realization of the process is constructed from event to event
(discrete event simulation )
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Discrete event simulation (1)

• Idea: simulation evolves from event to event
– If nothing happens during an interval, we can just skip it!

• Event classes :
– basic events modifying (somehow) the state of the system

• e.g. arrivals and departures of customers in a simple teletraffic model

– extra events related to the data collection
• including the event for stopping the simulation run

– Inside these event classes, there are various event types

• Event identification:
– occurrence time (when) and
– event type (what)
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Discrete event simulation (2)

• Events are organized as an event list
– Events in this list are ordered (ascendingly) by the occurrence time

• first: the event occurring next
– Events are handled one-by-one (in this order)

• Simulation clock tells the occurrence time of the next event
– progressing by jumps

• System state tells the current state of the system
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Discrete event simulation (3)

• General algorithm for a single simulation run :
1 Initialization

• simulation clock = 0
• system state = given initial value

• for each event type, generate next event (whenever possible)

• construct the event list from these events
2 Event handling

• simulation clock = occurrence time of the next event

• handle the event including

– generation of new events and their addition to the event list
– updating of the system state

• delete the event from the event list

3 Stopping test
• if positive, then stop the simulation run; otherwise return to 2
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Example (1)

• Task: Simulate the M/M/1 queue (more precisely: the evolution of the
queue length process) from time 0 to time T assuming that the queue is
empty at time 0 and omitting any data collection

– System state (at time t) = queue length Xt

• initial value: X0 = 0
– Basic events:

• customer arrivals

• customer departures

– Extra event:

• stopping of the simulation run at time T
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Example (2)

• Initialization:
– initialize the system state: X0 = 0

– generate the time till the first arrival time from the Exp(λ) distribution

• Handling of an arrival event (occurring at some time t):
– if Xt = 0, then

generate the time till the next departure from the Exp(µ) distribution

– generate the time till the next arrival from the Exp(λ) distribution

– update the system state: Xt = Xt + 1

• Handling of a departure event (occuring at some time t):
– update the system state: Xt = Xt - 1

– if Xt > 0, then
generate the time till the next departure from the Exp(µ) distribution

• Stopping test: t > T



19

9. Simulation

Example (3)

arrival and departure times
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Generation of realizations of random variables

• Based on random number generators

• First step:
– generation of independent U(0,1)distributed random variables

• Step from the U(0,1)distribution to the desired distribution:

– rescaling (⇒ U(a,b))

– discretization (⇒ Bernoulli(p), Bin(n,p), Poisson(a), Geom(p))

– inverse transform (⇒ Exp(λ))

– other transforms (⇒ N(0,1)⇒ N(µ,σ2))
– acceptance-rejection method (for any continuous random variable defined

in a finite interval whose density function is bounded)

• two independent U(0,1)distributed random variables needed
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Random number generator

• Random number generator is an algorithm generating (pseudo)
random integers Zi in some interval 0,1,…,m-1

– The resulting numbers Zi are called (pseudo ) random numbers

– The sequence generated is always periodic
(goal: this period to be as long as possible)

– Strictly speaking, the numbers generated are not “random” at all, in the
sense of being unpredictable (thus: pseudo)

– In practice, however, the numbers “appear” to be IID with uniform
distribution, provided that the random number generator is designed
carefully

• Validition of a random number generator can be based on empirical
(statistical) and theoretical tests:

– uniformity of the generated empirical distribution

– independence of the generated random numbers
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Random number generator types

• Linear congruential generator
– most simple

– next random number is based on just the current one: Zi+1 = f(Zi)

• Multiplicative congruential generator
– a special case of the first type

• Additive congruential generators

• Shuffling, etc.
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• Linear congruential generator (LCG) uses the following algorithm to
generate random numbers belonging to {0,1,…,m-1} :

– Here a, c and m are fixed non-negative integers (a < m, c < m)

– In addition, the starting value (seed ) Z0 < m should be specified

• Remarks:
– Parameters a, c and m should be chosen with care,

otherwise the result can be very poor
– By a right choice of parameters,

it is possible to achieve the full period m

• e.g. m = 2b, c odd, a = 4k +1

Linear congruential generator (LCG)

mcaZZ ii mod)(1 +=+
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• Multiplicative congruential generator (MCG) uses the following
algorithm to generate random numbers belonging to {0,1,…,m-1} :

– Here a and m are fixed non-negative integers (a < m)

– In addition, the starting value (seed) Z0 < m should be specified

• Remarks:
– MCG is clearly a special case of LCG: c = 0

– Parameters a and m should (still) be chosen with care

– In this case, it is not possible to achieve the full period m

• e.g. if m = 2b, then the maximum period is 2b-2

– However, for m prime , period m-1 is possible (by a proper choice of a)

• PMMLCG = prime modulus multiplicative LCG

• e.g. m = 231-1 and a = 16,807(or 630,360,016)

Multiplicative congruential generator (MCG)

maZZ ii mod)(1 =+
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U(0,1) distribution

• Let Z denote a (pseudo) random number belonging to {0,1,…,m-1}
• Then (approximately)

)1,0U(≈=
m
ZU
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U(a,b) distribution

• Let U ∼ U(0,1)
• Then

• This is called the rescaling method

),U()( baUabaX ∼−+=
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Discretization method

• Let U ∼ U(0,1)

• Assume that Y is a discrete random variable

– with value set S= {0,1,…,n} or S= {0,1,2,…}

• Denote: F(x) = P{ Y ≤ x}
• Then

• This is called the discretization method (cf. inverse transform method)

• Example: Bernoulli(p) distribution

YUxFSxX })(|min{ ∼≥∈=

)Bernoulli(
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Inverse transform method

• Let U ∼ U(0,1)

• Assume that Y is a continuous random variable

• Assume further that F(x) = P{ Y ≤ x} is strictly increasing

• Let F-1(y) denote the inverse of the function F(x)
• Then

• This is called the inverse transform method

• Proof: Since P{ U ≤ u} = u for all u, we have

YUFX )(1 ∼= −

)()}({})({}{ 1 xFxFUPxUFPxXP =≤=≤=≤ −

30

9. Simulation

Exp(λλλλ) distribution

• Let U ∼ U(0,1)
– Then also 1-U ∼ U(0,1)

• Let Y ∼ Exp(λ)
– F(x) = P{ Y ≤ x} = 1-e-λx is strictly increasing

– The inverse transform is F-1(y) = -(1/λ) log(1-y)

• Thus, by the inverse transform method,

)Exp()log()1( 11 λλ ∼−=−= − UUFX
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N(0,1) distribution

• Let U1 ∼ U(0,1)and U2 ∼ U(0,1)be independent
• Then, by so called Box-Müller method,

the following two (transformed) random variables are independent and
identically distributed obeying the N(0,1)distribution:

)1,0()2sin()log(2 211 NUUX ∼−= π
)1,0()2cos()log(2 212 NUUX ∼−= π
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N(µµµµ,σσσσ2) distribution

• Let X ∼ N(0,1)
• Then, by the rescaling method,

),( 2σµσµ NXY ∼+=
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Collection of data

• Our starting point was that simulation is needed to estimate the value,
say α, of some performance parameter

– This parameter may be related to the transient or the steady-state
behaviour of the system.

– Examples 1 & 2 (transient phase characteristics)

• average waiting time of the first k customers in an M/M/1 queue
assuming that the system is empty in the beginning

• average queue length in an M/M/1 queue during the interval [0,T]
assuming that the system is empty in the beginning

– Example 3 (steady-state characteristics)

• the average waiting time in an M/M/1 queue in equilibrium

• Each simulation run yields one sample, say X, describing somehow the
parameter under consideration

• For drawing statistically reliable conclusions,
multiple samples, X1,…,Xn, are needed (preferably IID)
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Transient phase characteristics (1)

• Example 1:
– Consider e.g. the average waiting time of the first k customers in an M/M/1

queue assuming that the system is empty in the beginning

– Each simulation run can be stopped
when the kth customer enters the service

– The sample X based on a single simulation run is in this case:

• Here Wi = waiting time of the ith customer in this simulation run

• Multiple IID samples, X1,…,Xn, can be generated by the
method of independent replications:

– multiple independent simulation runs (using independent random numbers)

∑
=
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Transient phase characteristics (2)

• Example 2:
– Consider e.g. the average queue length in an M/M/1 queue during the

interval [0,T] assuming that the system is empty in the beginning

– Each simulation run can be stopped at time T (that is: simulation clock = T)

– The sample X based on a single simulation run is in this case:

• Here Q(t) = queue length at time t in this simulation run

• Note that this integral is easy to calculate, since Q(t) is piecewise
constant

• Multiple IID samples, X1,…,Xn, can again be generated by the method
of independent replications

∫=
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Steady-state characteristics (1)

• Collection of data in a single simulation run can typically (but not
always) be done only after a warm-up phase (hiding the transient
characteristics) resulting in

– overhead

– bias in estimation

– need for determination of a sufficiently long warm-up phase

• Multiple samples, X1,…,Xn, may be generated by the following three
methods:

– independent replications

– batch means

– regenerative method

• The first two methods require a warm-up phase,
but the last one (that is: regenerative method) does not
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Steady-state characteristics (2)

• Method of independent replications :
– multiple independent simulation runs (using independent random numbers)

– each simulation run includes the warm-up phase ⇒ inefficiency

– samples IID ⇒ accuracy

• Method of batch means :
– one (very) long simulation run divided (artificially) into one warm-up phase

and N equal length periods (each of which represents a single simulation
run)

– only one warm-up phase ⇒ efficiency

– samples only approximately IID ⇒ inaccuracy, choice of N



39

9. Simulation

Steady-state characteristics (3)

• Regenerative method :
– only possible, if the traffic process is a regenerative stochastic process

• G/G/1 queue (and, thus also M/M/1 and M/G/1) is regenerative
(a new cycle starts whenever a new customer arrives in an empty
system)

• all Markov processes are regenerative
(a new cycle starts whenever the process enters some fixed state)

– one (very) long simulation run divided into N IID cycles (each of which
represents a single simulation run)

– no warm-up phase ⇒ efficiency

– samples IID ⇒ accuracy

– the problem is that the cycle lengths , which are random variables, can be
(much too) long ⇒ inefficiency
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Parameter estimation

• As mentioned, our starting point was that simulation is needed to
estimate the value, say α, of some performance parameter

• Each simulation run yields a (random) sample, say Xi,
describing somehow the parameter under consideration

– Sample Xi is called unbiased if E[Xi] = α
• Denote the sample average by

• Assuming that the samples Xi are IID with mean α and variance σ2,
the sample average is unbiased and consistent estimator of α, since
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Example

• Consider the average waiting time of the first 25 customers in an M/M/1
queue with load ρ = 0.9assuming that the system is empty in the
beginning

– Theoretical value: α = 2.12

– Samples Xi from ten simulation runs (n = 10):

• 1.05, 6.44, 2.65, 0.80, 1.51, 0.55, 2.28, 2.82, 0.41, 1.31

– Sample average (point estimate for α):
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10
1

1
1 =+++=∑= = �

n
i inn XX



43

9. Simulation

Confidence interval (1)

• Assume that Xi’s are IID with unknown mean α and known variance σ2

• By the Central Limit Theorem (see Lecture 5, Slide 49), for large n,

• Let zp denote the p-fractile of the N(0,1)distribution,
that is: P{ Z ≤ zp} = p, where Z ∼ N(0,1)

– Example: for β = 5%, z1-(β/2) = z0.975≈ 1.96≈ 2

• The following interval is called the confidence interval for the sample
average at confidence level 1 - β:

– This means that P{|Xn - α| ≤ z1-(β/2) σ/√n} = 1 - β,
that is: “with probability 1 - β, the parameter α belongs to this interval”
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Confidence interval (2)

• In general, however, the variance σ2 is unknown
(in addition to the mean α)

• It can be estimated by the sample variance :

• It is possible to prove that
the sample variance is an unbiased and consistent estimator of σ2:
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Confidence interval (3)

• Assume that Xi’s are IID obeying the N(α,σ2) distribution
with unknown mean α and unknown variance σ2

• Then it is possible to show that

• Let tn-1,p denote the p-fractile of the Student(n-1) distribution,
that is: P{ T ≤ tn-1,p} = p, where T ∼ Student(n-1)

– Example 1: for n = 10 and β = 5%, tn-1,1-(β/2) = t9,0.975≈ 2.26≈ 2

– Example 2: for n = 100and β = 5%, tn-1,1-(β/2) = t99,0.975≈ 1.98≈ 2

• Thus, the confidence interval for the sample average at confidence
level 1 - β is now as follows:
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Example (continued)

• Consider the average waiting time of the first 25 customers in an M/M/1
queue with load ρ = 0.9assuming that the system is empty in the
beginning

– Theoretical value: α = 2.12

– Samples Xi from ten simulation runs (n = 10):

• 1.05, 6.44, 2.65, 0.80, 1.51, 0.55, 2.28, 2.82, 0.41, 1.31

– Sample average = 1.98 and the square root of the sample variance:

– So, the confidence interval (that is: interval estimate for α) at confidence
level 95% is
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Observations

• Simulation results become more accurate (that is: the interval estimate
for α becomes narrower) when

– the number n of simulation runs is increased, or

– the variance σ2 of each sample is reduced

• Given the desired accuracy for the simulation results,
the number of required simulation runs can be determined dynamically
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THE END


