

lect04.ppt

S-38.145 - Introduction to Teletraffic Theory - Fall 1999

1

4. Traffic modelling and measurements

- Traditional modelling of telephone traffic
- Traffic variations
- Traffic measurements
- Traditional modelling of data traffic
- Novel models for data traffic

Modelling of telephone traffic

• In telephone networks:

$\mathsf{Traffic} \leftrightarrow \mathsf{Calls}$

- Traffic model (for a single link) should specify
 - the type of the call arrival process
 - the distribution of call holding times
- These together specify
 - the traffic process that tells the number of ongoing calls
 number of occupied channels
 - = instantaneous intensity of the traffic carried (in erlangs)
- Note:
 - Traffic volume refers to

the amount of carried traffic during some time interval = integral of the instantaneous traffic intensity over this interval

3

Call arrival process (1)

• Aggregated traffic in trunk network

- Traditional model: **Poisson process** (with some intensity $\lambda > 0$)
 - In a short time interval of length Δ , there are two possibilities: either a new call arrives (with probability $\lambda\Delta$) or nothing happens (with probability $1 - \lambda\Delta$)
 - Disjoint intervals are independent of each other
 - As a result: call interarrival times are independently and exponentially distributed with mean $1/\lambda$
- This is found to be a good model when user population is large ("infinite") and users make independent decisions (which is the case for the links in the trunk network)
- Corresponding teletraffic models are loss models:
 - Erlang model (finite link capacity)
 - Poisson model (infinite link capapcity)

Call arrival process (3)

- Traffic generated by an **individual user** (subscriber)
 - Traditional model: exponential on-off process
 - The user alternates between on and off states
 - When on, a call is going on
 - When off, the user is "idle"
 - The times spent in different states are assumed to be independent and exponentially distributed (with state-dependent mean)
- Traffic generated by a superposition of users in access network
 - Finite number of individual users
 - modelled separately as above
 - making independent decision
 - Corresponding teletraffic models are loss models:
 - Engset model (insufficient link capacity)
 - Binomial model (sufficient link capacity)

4. Traffic modelling and measurements

Call holding time (1)

- Basic assumption:
 - call holding times are independent and identically distributed
 - Distribution of call holding times
 - Traditional model: exponential distribution
 - one parameter \Rightarrow simple!
 - memoryless property: given that the holding time is at least (any) *t*, the probability that the call will end in a short time interval (*t*, *t*+Δ) depends just on Δ (but not on *t*)
 - exponential tail
 - More complicated models:
 - normal distribution (two parameters: mean and variance)
 - log-normal distribution (two parameters)
 - hyper-exponential (with two parameters)
 - Weibull distribution (with two/three parameters)

7

Call holding time (2)

- Call holding time distribution is typically different for
 - business and residential calls
 - daytime and evening calls
 - ordinary and "data" calls (fax, Internet access, etc.)

4. Traffic modelling and measurements

- Traditional modelling of telephone traffic
- Traffic variations
- Traffic measurements
- Traditional modelling of data traffic
- Novel models for data traffic

Traffic variations in different time scales (1)

• Predictive variations

- Trend (years)
 - traffic growth: due to
 - existing services (new users, new ways to use, new tariffs)
 - new services
- Regular year profile (months)
- Regular week profile (days)
- Regular day profile (hours)
 - including "busy hour"
- Variations caused by predictive (regular and irregular) external events
 - regular: e.g. Christmas day
 - irregular: e.g. World Championships, televoting
- Note: different profiles for different types of user groups
 - e.g. business vs. residential users

11

4. Traffic modelling and measurements

Traffic variations in different time scales (2)

- Non-predictive variations
 - Short term stochastic variations (seconds minutes)
 - random call arrivals
 - random call holding times
 - Long term stochastic variations (hours ...)
 - · random deviations around the profiles
 - each day, week, month, etc. is different
 - Variations caused by non-predictive external events
 - e.g. earthquakes, hurricanes

Busy hour (1)

- For dimensioning,
 - an estimate of the traffic load is needed
- In telephone networks,
 - standard way is to use so called **busy hour** traffic for dimensioning

Busy hour \approx the continuous 1-hour period for which the traffic volume is greatest

- This is unambiguous only for a single day (let's call it daily peak hour)
- For dimensioning, however,
 - we have to look at not only a single day but many more (why?)
- At least three different definitions for busy hour (covering several days) have been proposed:
 - Average Daily Peak Hour (ADPH)
 - Time Consistent Busy Hour (TCBH)
 - Fixed Daily Measurement Hour (FDMH)

13

4. Traffic modelling and measurements

• Fixed Daily Measurement Hour (FDMH) traffic volume:

$$V_{\text{FDMH}} = \frac{1}{N} \sum_{n=1}^{N} V_n(\Delta_{\text{fixed}})$$

Busy hour (3)

• Average Daily Peak Hour (ADPH) traffic:

$$a_{\text{ADPH}} = \frac{1}{\Delta} \cdot V_{\text{ADPH}}$$

• Time Consistent Busy Hour (TCBH) traffic:

$$a_{\text{TCBH}} = \frac{1}{\Delta} \cdot V_{\text{TCBH}}$$

• Fixed Daily Measurement Hour (FDMH) traffic:

$$a_{\text{FDMH}} = \frac{1}{\Lambda} \cdot V_{\text{FDMH}}$$

• It can be shown (how?) that

$$a_{\rm FDMH} \le a_{\rm TCBH} \le a_{\rm ADPH}$$

15

4. Traffic modelling and measurements

- Traditional modelling of telephone traffic
- Traffic variations
- Traffic measurements
- Traditional modelling of data traffic
- Novel models for data traffic

Traffic measurements (1)

- Traffic measurements are needed for
 - network design and traffic management
 - a basis for dimensioning
 - traffic modelling
 - traffic predictions
 - traffic control (e.g. connection admission control, dynamic routing)
 - congestion control (e.g. congestion detection)
 - but also for
 - getting accounting information
- More and more information about traffic is needed because of
 - new users, new ways to use, new tariffs (as for existing services and networks)
 - new services and networks
 - increasingly tough competition

4. Traffic modelling and measurements

Traffic measurements (2)

- Traffic measurements in telephone networks
 - traffic on different links
 - traffic process (carried traffic intensity = number of occupied channels)
 - call arrival process (interarrival times)
 - call holding times
 - traffic on different trunk network nodes
 - distribution of incoming traffic from different directions
 - · distribution of outgoing traffic in different directions
 - traffic on different access network nodes
 - distribution according to the type of traffic source
 - e.g. residential vs. business subscribers
 - use of different services

Traffic measurements (3)

- Traffic measurements in Internet/LAN
 - traffic on different links
 - traffic process (carried traffic intensity in bits per second)
 - traffic on different network nodes
 - traffic at different protocol levels
 - packet level (IP)
 - packet arrival process (interarrival times)
 - packet lengths
 - connection level (TCP)
 - connection arrival process
 - connection holding times
 (per applications: ftp / http / email / telnet etc.)
 - total amount of information transferred (per applications: ftp / http / email / telnet etc.)

4. Traffic modelling and measurements

Analysis of traffic measurements

- Traditional statistical methods:
 - parameter estimation
 - traffic intensity
 - traffic variability (short term variance, coefficient of variation)
 - traffic peakedness
 - estimation of probability density function
 - auto-correlation
- New approach:
 - scalability analysis
 - self-similarity
 - multifractal characterization

Estimation of the traffic intensity based on measurements

- Consider the traffic process (in a link of a telephone network)
 - Traffic is measured during some interval [0,T] (e.g. busy hour)
 - Let V(T) denote the traffic volume during this interval (random variable!)
- Purpose is to estimate the (carried) traffic intensity
 - assuming that it is constant
 - based on these measurements
- A natural **estimate** for *a* is

$$\hat{a} = \frac{V(T)}{T}$$

• It is **unbiased**, that is: its expectation is *a*,

$$E[\hat{a}] = \frac{E[V(T)]}{T} = a$$

21

4. Traffic modelling and measurements

Different measurement modes (1)

Continuous measurement

- Register
 - the number of occupied channels at time 0
 - the starting times of all connections during interval [0,T]
 - the stopping times of all connections during interval [0,T]
- Thus, it is possible to reconstruct the actual traffic process
 - giving an **exact** value for the traffic volume V(T)
- **Discrete measurements** at regular intervals (of length Δ)
 - Register
 - the number of occupied channels X(t) at times $t = 0, \Delta, 2\Delta, ..., T-\Delta$
 - Traffic volume during interval [0,T] is **estimated** by

$$\hat{V}_{\Delta}(T) = \sum_{n=0}^{(T/\Delta)-1} X(n\Delta) \cdot \Delta$$

– Note: the estimate approaches to V(T) as $\Delta \downarrow 0$

Different measurement modes (2)

Continuous measurement

Discrete measurements at regular intervals

23

4. Traffic modelling and measurements

On the accuracy of the estimate (1) • Continuous measurement - Estimate \hat{a} itself is a random variable with relative error $\frac{D[\hat{a}]}{E[\hat{a}]} = \frac{D[V(T)]}{E[V(T)]} = \frac{D[V(T)]}{aT}$ - Assume that • calls arrive according to a Poisson process • call holding times are exponentially distributed with mean h = 1• link capacity is infinite • Then the relative error is approximately $\frac{1}{\sqrt{a}} \qquad (when T is very small)$ $\frac{\sqrt{2}}{\sqrt{a}\sqrt{T}} \qquad (when T is large enough)$

On the accuracy of the estimate (2)

• Discrete measurements at regular intervals of length Δ

- Estimate \hat{a}_{Λ} itself is again a random variable with relative error

$D[\hat{a}_{\Delta}]$	$D[\hat{V}_{\Delta}(T)]$	$D[\hat{V}_{\Delta}(T)]$
$\overline{E[\hat{a}_{\Lambda}]}$ –	$\frac{1}{E[\hat{V}_{\Lambda}(T)]}$	aT

- Note that in this case

- in addition to the random deviation between a and $\hat{a} = V(T)/T$, estimate \hat{a}_{Δ} includes the measurement error (deviation between V(T)and its estimate)
- Under the same assumptions as above, the relative error is approximately

$$\frac{\sqrt{\Delta}}{\sqrt{a}\sqrt{T}} \cdot \frac{\sqrt{1+\exp(-\Delta)}}{\sqrt{1-\exp(-\Delta)}} \quad \text{(when } T \text{ is large enough)}$$

4. Traffic modelling and measurements

Example

- Accuracy requirement:
 - an estimate of *a* with max. relative error p = 5%
- Assume:
 - traffic intensity a = 100 erlangs
- Continuous measurement:
 - measurement interval T should be at least

$$T \ge \frac{2}{a \cdot p^2} = \frac{2}{100} \cdot \left(\frac{100}{5}\right)^2 = 8.0 \text{ (mean holding times)}$$

- Discrete measurements at regular intervals of length $\Delta = 1$ (hold. time):
 - measurement interval T should be at least

$$T \ge \frac{\Delta}{a} \cdot \frac{1 + \exp(-\Delta)}{1 - \exp(-\Delta)} \cdot \frac{1}{p^2} \cong \frac{2.164}{100} \cdot \left(\frac{100}{5}\right)^2 \cong 8.7 \text{ (mean holding times)}$$

Contents

- Traditional modelling of telephone traffic
- Traffic variations
- Traffic measurements
- Traditional modelling of data traffic
- Novel models for data traffic

4. Traffic modelling and measurements

Traditional modelling of data traffic

- Connection level
 - new connections arrive according to a Poisson process
 ⇒ connection interarrival times independent and exponentially distributed
 - connection holding times are independent and exponentially distributed
 - infinite system model (since no connection admission control)
- Packet level
 - new packets arrive according to a Poisson process
 ⇒ packet interarrival times independent and exponentially distributed
 - packet lengths are independent and exponentially distributed
 ⇒ packet transmission times (in links) independent and exponentially distributed
 - queueing model

Traffic process at the packet level (1)

- Consider the traffic process at the packet level
- In continuous time,
 - there are just two possibilities: a link is either
 - **busy** (with the whole link capacity C in use) or
 - idle

depending on whether there are packets to be transmitted in the buffer or not

- thus, link occupancy can take just two different values: 0 or C
- note: when a packet is being transmitted, it takes the whole link capacity
- However, by averaging this process (over time intervals),
 - link occupancy can have any value between 0 or C

4. Traffic modelling and measurements

Modelling of ATM traffic (2)

- Call level
 - "traffic unit" = connection
 - loss model (for CBR and VBR connections)
- Burst level
 - "traffic unit" = burst of varying length (and possibly of varying rate)
 - (traditional) fluid buffer models:
 - superposition of exponential ON-OFF sources (A-M-S model)
 - burst arrivals according to Poisson process (Kosten model)
- Cell level
 - "traffic unit" = fixed length cell
 - queueing models:
 - superposition of periodic sources (N*D/D/1)
 - cell arrivals according to Poisson process (M/D/1)
 - discrete time Markov arrival processes (MAP/D/1)

33

4. Traffic modelling and measurements

- Traditional modelling of telephone traffic
- Traffic variations
- Traffic measurements
- Traditional modelling of data traffic
- Novel models for data traffic

Bellcore measurements

- Ethernet (LAN) measurements by Leland, Willinger, ... ('89-'92)
 - high-accuracy recording of hundreds of millions Ethernet packets
 - including both the arrival time and the length
 - see: IEEE/ACM Trans. Networking, vol. 2, nr. 1, pp. 1-15, February 1994
- Conclusions:
 - Ethernet traffic seems to be extremely varying
 - presence of "burstiness" across an extremely wide range of time scales (from microseconds to milliseconds, seconds, minutes, hours, ...)
 - bad from the performance point of view
 - Ethernet traffic is statistically self-similar (fractal-like)
 - it looks the same in all time scales
 - a single parameter (the Hurst parameter) describes the fractal nature
 - good from the modelling point of view (parsimony!)
 - Traditional data traffic models do not capture these properties!

4. Traffic modelling and measurements

Internet measurements

- Internet (WAN) measurements by Paxson and Floyd ('93-'95)
 - both the connection and the packet level concerned
 - see: IEEE/ACM Trans. Networking vol. 3, nr. 3, pp. 226-244, June 1995
- Connection level conclusions:
 - For interactive TELNET traffic (and other user-initiated sessions),
 - connection arrivals are well-modelled by a Poisson process (with hourly fixed rates)
 - But for connections within user-initiated sessions (FTP data, HTTP) and machine-generated connections
 - connection arrivals are more **bursty** than in a Poisson process (and even correlated)
- Packet level conclusions
 - empirical distribution of TELNET packet interarrival times is
 - heavy-tailed (not exponential as traditionally modelled)

New models for data traffic

- Subexponential distributions ("worse than exponential tail")
 e.g. log-normal, Weibull and Pareto distributions
- Heavy-tailed distributions ("power-law tail")
 - e.g. Pareto distribution (with location parameter a and shape parameter β)

 $P\{X > x\} = (a / x)^{\beta}, \quad x \ge a > 0, \ \beta > 0$

- Processes exhibiting long range dependence (LRD)
 - e.g. self-similar and asymptotically self-similar processes
- Self-similar processes
 - e.g. fractional Brownian motion (FBM)
 - suitable for describing aggregated traffic (in trunk network)
 - just three parameters (thus, parsimonious!)
 - one of them, so called **Hurst parameter** *H*, describes the grade of long range dependence (when in the interval (½,1))

37

4. Traffic modelling and measurements

Self-similarity, long range dependence and heavy tails

- If a stochastic process is **self-similar** (or asymptotically self-similar) with positive correlations,
 - then it exhibits long range dependence (LRD)
- Self-similarity and long range dependence are related to
 - heavy tailed distributions
 - tail of the distribution decreases as a power function (which is much slower than exponentially)
- In teletraffic models, this refers e.g. to distributions of
 - packet lengths and packet interarrival times,
 - connection holding times and connection interarrival times

Example on heavy tails, self-similarity and long range dependence

- Consider an infinite system (M/G/∞)
 - new customers arrive according to a Poisson process
 - service times independent and identically distributed
 - service time distribution heavy-tailed with an infinite variance
 - e.g. Pareto distribution with shape parameter $\beta < 2$
- Then the traffic process (number of customers in the system) is
 - asymptotically self-similar (and, thus, long range dependent)

