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4. Traffic modelling and measurements

Modelling of telephone traffic

* Intelephone networks:

Traffic ~ Calls

» Traffic model (for a single link) should specify

— the type of the call arrival process
— the distribution of call holding times

* These together specify

— the traffic process that tells the number of ongoing calls

= number of occupied channels

= instantaneous intensity of the traffic carried (in erlangs)

* Note:
Traffic volume refers to

the amount of carried traffic during some time interval
= integral of the instantaneous traffic intensity over this interval
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Call arrival process (1)

» Aggregated traffic in trunk network
— Traditional model: Poisson process (with some intensity A > 0)

 In a short time interval of length A, there are two possibilities:
either a new call arrives (with probability AA)
or nothing happens (with probability 1 - AA)

+ Disjoint intervals are independent of each other

* As aresult: call interarrival times are
independently and exponentially distributed with mean 1/A

— This is found to be a good model when
user population is large (“infinite”) and users make independent decisions
(which is the case for the links in the trunk network)

— Corresponding teletraffic models are loss models:
» Erlang model (finite link capacity)
» Poisson model (infinite link capapcity)

Call arrival process (2)

e Overflow traffic in trunk network
— due to alternative routing
— Model: Interrupted Poisson

process (IPP) IEI

— In addition to the traffic process
itself, there is a modulating
process that tells whether the
arrivals of an ordinary Poisson
process will be realized or not a c

— In the overflow model, the
modulating process is the traffic )
process of the original (direct) direct route: a - ¢
link (how?) alternative route: a-b -c

— Traffic stream consists of the
calls blocked in the direct link




Call arrival process (3)

» Traffic generated by an individual user (subscriber)
— Traditional model: exponential on-off process
* The user alternates between on and off states
— When on, a call is going on
— When off, the user is “idle”

» The times spent in different states are assumed to be
independent and exponentially distributed (with state-dependent mean)

» Traffic generated by a superposition of users in access network
— Finite number of individual users
» modelled separately as above
* making independent decision
— Corresponding teletraffic models are loss models:
» Engset model (insufficient link capacity)
» Binomial model (sufficient link capacity)

Call holding time (1)

» Basic assumption:
— call holding times are independent and identically distributed
e Distribution of call holding times
— Traditional model: exponential distribution
 one parameter [1 simple!
* memoryless property : given that the holding time is at least (any) t,
the probability that the call will end in a short time interval (t, t+A)
depends just on A (but not on t)
» exponential tail
— More complicated models:
» normal distribution (two parameters: mean and variance)
* log-normal distribution (two parameters)
* hyper-exponential (with two parameters)
» Weibull distribution (with two/three parameters)




Call holding time (2)

Call holding time distribution is typically different for
— business and residential calls
— daytime and evening calls
— ordinary and “data” calls (fax, Internet access, etc.)
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Traffic variations in different time scales (1)

Predictive variations
— Trend (years)
« traffic growth: due to
— existing services (new users, new ways to use, new tariffs)
— new services
— Regular year profile  (months)
— Regular week profile (days)
— Regular day profile (hours)
* including “busy hour”
— Variations caused by predictive (regular and irregular) external events
» regular: e.g. Christmas day
* irregular: e.g. World Championships, televoting
— Note: different profiles for different types of user groups
* e.g. business vs. residential users
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Traffic variations in different time scales (2)

Non-predictive variations

— Short term stochastic variations  (seconds - minutes)
» random call arrivals
» random call holding times

— Long term stochastic variations  (hours - ...)
» random deviations around the profiles
» each day, week, month, etc. is different

— Variations caused by non-predictive external events
* e.g. earthquakes, hurricanes
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Busy hour (1)

e For dimensioning,
— an estimate of the traffic load is needed
* In telephone networks,
— standard way is to use so called busy hour traffic for dimensioning

Busy hour = the continuous 1-hour period for which the traffic volume is greatest

— This is unambiguous only for a single day (let’s call it daily peak hour )
— For dimensioning, however,
* we have to look at not only a single day but many more (why?)

— At least three different definitions for busy hour (covering several days)
have been proposed:

» Average Daily Peak Hour (ADPH)
» Time Consistent Busy Hour (TCBH)
» Fixed Daily Measurement Hour (FDMH)
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Busy hour (2)

e Let
— N = number of days during which measurements are done (e.g. N = 10)
— V,(A) = measured traffic volume during 1-hour interval A of day n
— max, V,,(A) = daily peak hour traffic volume of day n

» Average Daily Peak Hour (ADPH) traffic volume:

— 1 <N
VADPH = 2 n=1MaXa Vi (B)
* Time Consistent Busy Hour (TCBH) traffic volume:
— 1N
VreaH = Maxa § > n=1Vn(8)
» Fixed Daily Measurement Hour (FDMH) traffic volume:

_1<N
VebMH = 3 3 netVin (Brixed)
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Busy hour (3)

Average Daily Peak Hour (ADPH) traffic:
aappH =y VADPH
Time Consistent Busy Hour (TCBH) traffic:
arceH = 5 VrceH
Fixed Daily Measurement Hour (FDMH) traffic:
arpMH = 1 VrDMH
It can be shown (how?) that

aFpMH SaTCcBH S aADPH
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Traffic measurements (1)

» Traffic measurements are needed for
— network design and traffic management
» a basis for dimensioning
« traffic modelling
« traffic predictions
« traffic control (e.g. connection admission control, dynamic routing)
» congestion control (e.g. congestion detection)
— but also for
» getting accounting information
* More and more information about traffic is needed because of

— new users, new ways to use, new tariffs
(as for existing services and networks)

— new services and networks
— increasingly tough competition
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Traffic measurements (2)

» Traffic measurements in telephone networks

— traffic on different links
» traffic process (carried traffic intensity = number of occupied channels)
« call arrival process (interarrival times)
+ call holding times

— traffic on different trunk network nodes
» distribution of incoming traffic from different directions
« distribution of outgoing traffic in different directions

— traffic on different access network nodes
« distribution according to the type of traffic source

— e.g. residential vs. business subscribers

 use of different services
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Traffic measurements (3)

e Traffic measurements in Internet/LAN
— traffic on different links
« traffic process (carried traffic intensity in bits per second)
— traffic on different network nodes
— traffic at different protocol levels
» packet level (IP)
— packet arrival process (interarrival times)
— packet lengths
» connection level (TCP)
— connection arrival process

— connection holding times
(per applications: ftp / http / email / telnet etc.)

— total amount of information transferred
(per applications: ftp / http / email / telnet etc.)
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Analysis of traffic measurements

» Traditional statistical methods:
— parameter estimation
* traffic intensity
« traffic variability (short term variance, coefficient of variation)
« traffic peakedness
— estimation of probability density function
— auto-correlation
* New approach:
— scalability analysis
* self-similarity
» multifractal characterization
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Estimation of the traffic intensity based on measurements

Consider the traffic process (in a link of a telephone network)

— Traffic is measured during some interval [0,T] (e.g. busy hour)

— Let V(T) denote the traffic volume during this interval (random variable!)
Purpose is to estimate the (carried) traffic intensity

— assuming that it is constant
— based on these measurements

A natural estimate for ais

It is unbiased , that is: its expectation is a,

E[4] = E[VT(T)] _ .
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Different measurement modes (1)

» Continuous measurement
— Register
 the number of occupied channels at time O
« the starting times of all connections during interval [0, T]
« the stopping times of all connections during interval [0,T]
— Thus, it is possible to reconstruct the actual traffic process
« giving an exact value for the traffic volume V(T)
« Discrete measurements at regular intervals (of length A)
— Register
« the number of occupied channels X(t) at timest =0, A, 24, ..., T-A
— Traffic volume during interval [0,T] is estimated by

Va(T) =5 T 1x (na) i

— Note: the estimate approachesto V(T) asA 1 O
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Different measurement modes (2)

Continuous measurement
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On the accuracy of the estimate (1)

e Continuous measurement
— Estimate aitself is a random variable with relative error
D[a] _ DIV(T)] _ DIV(T)]
E[d] E[V(T)] aT

— Assume that
 calls arrive according to a Poisson process
« call holding times are exponentially distributed with mean h=1
* link capacity is infinite

— Then the relative error is approximately

ﬁ\ (when T is very small)
\/Efzﬁ (when T is large enough)
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On the accuracy of the estimate (2)

» Discrete measurements at regular intervals of length A
— Estimate &, itself is again a random variable with relative error
D[4a] _ DIVA(T)] _ DIVA(T)]
E[aa]  E[VA(T)] atT
— Note that in this case

« in addition to the random deviation between a and a= V(T)/T,
estimate &, includes the measurement error (deviation between V(T)
and its estimate)

— Under the same assumptions as above, the relative error is approximately
JA o/t exp( )
JaT fI-expEA)

(when T is large enough)
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Example

Accuracy requirement:
— an estimate of a with max. relative error p = 5%
Assume:

— traffic intensity a = 100 erlangs
Continuous measurement:
— measurement interval T should be at least

2 _ 2 rfloofF — Nt
T> a?)z = 100[6%)2 = 8.0 (meanholdingtimes)

Discrete measurements at regular intervals of length A = 1 (hold. time):

— measurement interval T should be at least

T=22 tgigg:ﬁ; IZIlol—2 D%%“E(lgo)z [18.7 (meanholding times)
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Traditional modelling of data traffic

*« Connection level

— new connections arrive according to a Poisson process
O connection interarrival times independent and exponentially distributed

— connection holding times are independent and exponentially distributed
— infinite system model (since no connection admission control)

 Packet level

— new packets arrive according to a Poisson process
[0 packet interarrival times independent and exponentially distributed
— packet lengths are independent and exponentially distributed
O packet transmission times (in links) independent and exponentially
distributed

— queueing model




Traffic process at the packet level (1)

» Consider the traffic process at the packet level
¢ In continuous time,
— there are just two possibilities: a link is either
« busy (with the whole link capacity C in use) or
* idle
depending on
whether there are packets to be transmitted in the buffer or not

— thus, link occupancy can take just two different values: 0 or C

— note: when a packet is being transmitted, it takes the whole link capacity
* However, by averaging this process (over time intervals),

— link occupancy can have any value between 0 or C

Traffic process at the packet level (2)

Buffer occupation

0 _l >
TT TTT TT Ttime

Packet arrival times

Link occupation

—0 —

time
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Traffic process at the packet level (3)

Link occupation (continuous)
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Modelling of ATM traffic (1)
* Three different time scales:
Call level
J L L | L] >
,// Burst level ) Tl
_ L 1_ | || .
el Celllevel ~ “=~<___
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Modelling of ATM traffic (2)

Call level
— “traffic unit” = connection
— loss model (for CBR and VBR connections)
Burst level
— “traffic unit” = burst of varying length (and possibly of varying rate)
— (traditional) fluid buffer models:
» superposition of exponential ON-OFF sources (A-M-S model)
* Dburst arrivals according to Poisson process (Kosten model)
Cell level
— “traffic unit” = fixed length cell
— queueing models:
» superposition of periodic sources (N*D/D/1)
+ cell arrivals according to Poisson process (M/D/1)
 discrete time Markov arrival processes (MAP/D/1)
33

Contents

Traditional modelling of telephone traffic
Traffic variations

Traffic measurements

Traditional modelling of data traffic
Novel models for data traffic

34




Bellcore measurements

« Ethernet (LAN) measurements by Leland, Willinger, ... (‘89-92)
— high-accuracy recording of hundreds of millions Ethernet packets
* including both the arrival time and the length
— see: IEEE/ACM Trans. Networking, vol. 2, nr. 1, pp. 1-15, February 1994
e Conclusions:
— Ethernet traffic seems to be extremely varying

» presence of “burstiness” across an extremely wide range of time scales
(from microseconds to milliseconds, seconds, minutes, hours, ...)

» bad from the performance point of view
— Ethernet traffic is statistically self-similar (fractal-like)
* it looks the same in all time scales
» asingle parameter (the Hurst parameter) describes the fractal nature
» good from the modelling point of view (parsimony!)
— Traditional data traffic models do not capture these properties!
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Internet measurements

* Internet (WAN) measurements by Paxson and Floyd (‘93-'95)

— both the connection and the packet level concerned

— see: IEEE/ACM Trans. Networking vol. 3, nr. 3, pp. 226-244, June 1995
e Connection level conclusions:

— For interactive TELNET traffic (and other user-initiated sessions),

» connection arrivals are well-modelled by a Poisson process
(with hourly fixed rates)

— But for connections within user-initiated sessions (FTP data, HTTP) and
machine-generated connections

» connection arrivals are more bursty than in a Poisson process
(and even correlated)

» Packet level conclusions
— empirical distribution of TELNET packet interarrival times is
* heavy-tailed (not exponential as traditionally modelled)
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New models for data traffic

Subexponential distributions (“worse than exponential tail”)
— e.g. log-normal, Weibull and Pareto distributions
Heavy-tailed distributions (“power-law tail”)
— e.g. Pareto distribution (with location parameter a and shape parameter [3)

P(X >x =(a/X)*, x=a>0, >0

Processes exhibiting long range dependence (LRD)
— e.g. self-similar and asymptotically self-similar processes
Self-similar processes
— e.g. fractional Brownian motion  (FBM)
* suitable for describing aggregated traffic (in trunk network)
* just three parameters (thus, parsimonious!)

 one of them, so called Hurst parameter H, describes
the grade of long range dependence (when in the interval (*2,1))
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Self-similarity, long range dependence and heavy tails

If a stochastic process is self-similar (or asymptotically self-similar)
with positive correlations,

— then it exhibits long range dependence (LRD)
Self-similarity and long range dependence are related to

— heavy tailed distributions

« tail of the distribution decreases as a power function
(which is much slower than exponentially)

In teletraffic models, this refers e.g. to distributions of
— packet lengths and packet interarrival times,
— connection holding times and connection interarrival times
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Example on
heavy tails, self-similarity and long range dependence

» Consider an infinite system (M/G/o0)
— new customers arrive according to a Poisson process
— service times independent and identically distributed
— service time distribution heavy-tailed with an infinite variance
* e.g. Pareto distribution with shape parameter 3 < 2
e Then the traffic process (hnumber of customers in the system) is
— asymptotically self-similar (and, thus, long range dependent)
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