lect02.ppt

S-38.145 - Introduction to Teletraffic Theory - Fall 1999

1

2. Modelling of telecommunication systems (part 1)

Contents

- Telecommunication networks
- Network level: switching and routing
- Link level: multiplexing and concentration
- Shared media: multiple access

Telecommunication network

- A simple model of a telecommunication network consists of
 - nodes
 - terminals
 - network nodes

Ο

- links between nodes
- Access network
 - connects the terminals to the network nodes
- Trunk network
 - connects the network nodes to each other

2. Modelling of telecommunication systems (part 1)

Network hierarchy

- Networks typically constructed level-by-level
- Relations to network topology
 - flat topologies (topology within one level)
 - hierarchial topologies
- One natural hierarchy:
 - access vs. trunk network
- Traditionally:
 - many hierarchial levels (5 in AT&T)
- Current tendency:
 - to reduce the number of levels in hierarchy
 - "We see future large national networks with only three levels."

Example: Why networks? (1)

- Assume that
 - there are N = 100 persons who want to be connected with each other
- Solution 1: Separate networks
 - point-to-point links with separate terminals for each user pair
 - no switches
 - no resource sharing
 - very low utilization

2. Modelling of telecommunication systems (part 1)

• Simultaneous connections A-B and C-D in solution 1

Example: Why networks? (3)

- Still assume that
 - there are N = 100 persons who want to be connected with each other
- Solution 2: Fully meshed network
 - one terminal per user
 - one 1x(N-1) switch per user
 - point-to-point links for each switch pair
 - partial resource sharing
 - better utilization

2. Modelling of telecommunication systems (part 1)

• Simultaneous connections A-B and C-D in solution 2

Example: Why networks? (5)

- Still assume that
 - there are N = 100 persons who want to be connected with each other
- Solution 3:
 Star network
 - one terminal per user
 - just one NxN switch for the whole network
 - NxN switch can be implemented with N/2 parallel Nx1/1xN switch pairs
 - complete resource sharing
 - best utilization

2. Modelling of telecommunication systems (part 1)

• Simultaneous connections A-B and C-D in solution 3

Contents

- Telecommunication networks
- Network level: switching and routing
- Link level: multiplexing and concentration
- Shared media: multiple access

2. Modelling of telecommunication systems (part 1)

Switching modes

- Circuit switching
 - telephone networks
 - mobile telephone networks
 - even applied to data networks
- Packet switching
 - data networks
 - two possibilities
 - connection oriented: e.g. X.25, Frame Relay
 - connectionless: e.g. Internet (IP), SS7 (MTP)
- Cell switching
 - fast packet switching with fixed length packets (cells): ATM
 - integration of different traffic types (voice, data, video)
 - \Rightarrow multiservice networks

Circuit switching (1)

• Connection oriented:

- connections set up end-to-end before information transfer
- resources reserved for the whole duration of connection
- Information transfer as
 continuous stream

Connectionless packet switching (1)

- Connectionless:
 - no connection set-up
 - no resource reservation
- Information transfer as
 discrete packets
 - varying length
 - global address (of the destination)

Connection oriented packet switching (1)

• Connection oriented:

- virtual connections
 set up end-to-end
 before information transfer
- no resource reservation
- Information transfer as
 discrete packets
 - varying length
 - local address (logical channel index)

Cell switching (1)

- Connection oriented:
 - virtual connections
 set up end-to-end
 before information transfer
 - resource reservation possible but not mandatory
- Information transfer as discrete packets (cells)
 - fixed (small) length
 - local address

Switching modes: summary

- Circuit switching
 - suitable for real-time traffic (voice, RT-video, ...)
 - inefficient for VBR traffic and data
 - transparent but inflexible
- Cell switching
 - quite flexible
 - efficient use of network resources
 - seq. integrity guaranteed
 - real-time guarantees possible
 - possible to integrate different traffic types

- Connection oriented packet switching
 - quite flexible
 - efficient use of network resources
 - seq. integrity guaranteed
 - no real-time guarantees
- Connectionless packet switching
 - flexible and fault tolerant
 - efficient use of network resources
 - seq. integrity not guaranteed
 - no real-time guarantees

23

2. Modelling of telecommunication systems (part 1)

Routing methods in telephone networks

- Fixed
 - no alternative routes
- Hierarchic
 - traditionally used in telephone networks
 - alternative routes searched in a fixed order
- Dynamic (non-hierarchic)
 - time-dependent (dynamic) routing tables
 - AT&T has shown some 15% improvement with routing performance with DNHR (dynamic non-hierarchial routing)
- Adaptive (non-hierarchic)
 - state-dependent (adaptive) call-by-call routing decisions
 - AT&T's next generation: RTNR (real-time network routing)
 - Another adaptive method: DAR (dynamic alternative routing) by BT

Contents

- Telecommunication networks
- Network level: switching and routing
- Link level: multiplexing and concentration
- Shared media: multiple access

2. Modelling of telecommunication systems (part 1)

Analogue vs. digital systems (1)

- Originally telecommunication networks (i.e. telephone networks) were purely analogical
 - First: digital trunks between exchanges
 - Then: digital exchanges
 - In the current telephone network, the telephone itself and the access line are still based on the analogue technology
 - ISDN and GSM are the first completely digital telephone networks (including the terminals and the access part)
- Packet switched networks have always been completely digital
 - e.g. LANs
- Cell switched networks (ATM) are also completely digital

Analogue vs. digital systems (2)

- Analogical circuit switched system:
 - one connection occupies a single one or a multiple of channels
 - link capacity expressed in number of channels
- Digital circuit switched system:
 - one connection occupies a single one or a multiple of channels
 - channel capacity expressed in bits per second (bps, kbps, Mbps, ...)
 - typically: 64 kbps
 - link capacity expressed either in number of channels or in bits per second (being then a multiple of the channel capacity)
- Digital packet/cell switched system:
 - link capacity occupied dynamically on-demand
 - capacity demand (of a connection) expressed in bits per second
 - link capacity expressed in bits per second

2. Modelling of telecommunication systems (part 1)

Transmission: multiplexing (1)

- Originally,
 - each connection in a telephone network required its own physical link
- By multiplexing,
 - the capacity of a single physical link is divided into multiple channels
 - each connection typically occupies one channel
 - thus, multiple connections can be conveyed by a single link
- The device implementing this is called a multiplexer

Transmission: multiplexing (2)

- In circuit switched networks, there are two different multiplexing techniques:
 - frequency division multiplexing (FDM)
 - time division multiplexing (TDM)
- In packet switched networks, there is just
 - statistical multiplexing

Time division multiplexing (TDM)

- TDM
 - used in digital circuit switched systems
 - information conveyed on a link transferred in frames of fixed length
 - fixed portion (time slot) of each frame reserved for each channel
- TDM multiplexer is lossless
 - input: n 1-channel physical connections
 - output: 1 n-channel physical connection

- used in digital packet/cell switched systems (e.g. internet, ATM,
- information transferred in packets of varying or fixed length
- each packet belongs to exactly one connection
 - packet header includes the connection identifier
- link capacity reserved dynamically and asynchronously as packets arrive \Rightarrow need for buffering

Statistical multiplexer

- Statistical multiplexer is (typically) lossy
 - input: *n* physical connections with link speeds R_i (*i* = 1,...,*n*)
 - output: 1 physical connection with link speed $R \le R_1 + ... + R_n$
- However, the loss probability can be decreased by enlarging the buffer
 - with an "infinite" buffer, it is enough that *R* exceeds the average aggregated input rate

2. Modelling of telecommunication systems (part 1)

Teletraffic model for a statistical multiplexer

- Multiplexer can be modelled as
 - a pure waiting system (as below) if the buffer is large
 - a mixed system if the buffer is small
- Traffic consists of packets
 - each packet is transmitted with the full link speed R
 - let *L* denote the average packet length
 - packet service rate μ will be $\mu = R/L$
 - stability requirement: packet arrival rate $\lambda < \mu$

Transmission: concentration

- Concentration
 - used in circuit switched systems (analogue/digital)
 - typically in the access network part for economical reasons
 - however, switches are also (implicitly) concentrators
- In concentration,
 - traffic (= connections) from n 1-channel links is concentrated on a single m-channel link, where m < n
 - Idea: the probability that all n connections are active is typically very small

- Concentrator is lossy
 - input: *n* 1-channel physical connections
 - output: 1 *m*-channel physical connection with m < n
- Outgoing link should be dimensioned (i.e. *m* should be chosen) so that
 - the call blocking probability (that all *m* channels are occupied when a new call arrives) is small enough
 - In other words: the quality of service requirement should be fulfilled

Teletraffic model for a concentrator

- Concentrator can be modelled as
 - a pure loss system (as below) with *m* parallel servers
- Traffic consists of connections
 - traffic generated by a finite number (n) of sources
 ⇒ arrival rate λ is not constant but depends on the total number of sources (n) and the number of active sources (x): λ = λ(n,x)
 - let h denote the average connection holding time
 - service rate μ will be $\mu = 1/h$

- Telecommunication networks
- Network level: switching and routing
- Link level: multiplexing and concentration
- Shared media: multiple access

Multiple access techniques used in mobile telephone networks

- Mobile telephone networks are geographically divided into cells
 - Each cell has its own base station
- The radio frequency band reserved for the network access (within a cell) is divided into channels
 - The users (located in that cell) compete for these channels
- Dynamic channel assignment is made
 - centralized by the base station
- Various multiple access methods:
 - frequency division multiple access (FDMA)
 - time division multiple access (TDMA)
 - code division multiple access (CDMA)

2. Modelling of telecommunication systems (part 1)

FDMA and TDMA

- Frequency division multiple access (FDMA)
 - used in analogue mobile networks, e.g. NMT
 - radio frequency band reserved for the network divided into subbands (channels)
 - each connection occupies one channel
 - thus, simultaneous connections use separate frequency (sub)bands
- Time division multiple access (TDMA)
 - used in digital mobile networks, e.g. GSM
 - information transferred in frames of fixed length
 - fixed portion (time slot) of each frame reserved for each channel
 - each connection occupies one channel
 - thus, simultaneous connections use the same frequency band
 - utilization of the frequency band better than in FDMA

CDMA

- Code division multiple access (CDMA)
 - used in digital mobile networks, e.g. IS-95 (USA)
 - information coded before transfer in such a way that simultaneous transmissions do not interfere (too much)
 - each code corresponds to a channel
 - thus, simultaneous connections use the same frequency band
 - in general, the utilization of the frequency band is better than in TDMA
 - however, the notion "system capacity" in CDMA is elastic (contrary to FDMA and TDMA):
 - the more codes (channels), the greater the interference!

2. Modelling of telecommunication systems (part 1)

Teletraffic modelling of various multiple access techniques

- All multiple access techniques mentioned above (FDMA, TDMA and CDMA) can be modelled as a pure loss system
- Traffic consists of calls
 - calls either fresh or handovers
 - fresh calls may arrive according to a Poisson process, but is it so with the handovers?
 - due to handovers, call holding time is now different from coversation holding time
 - one more new feature: mobility modelling
- System capacity (that is, the number of parallel channels) depends on
 - the width of the frequency band reserved for the network
 - the multiple access technique used
- In CDMA, the system capacity depends additionally on
 - the allowed level of interferation (that is, on the required quality of service)

Multiple access techniques in computer LANs

- A computer LAN (local area network) transfers packets between any stations connected to this LAN
 - The stations compete for this joint transmission medium
- Dynamic channel assignment is made
 - in a fully **distributed** manner by the stations themselves
- Various multiple access methods:
 - Random Access
 - ALOHA, Slotted ALOHA (originally in satellite links)
 - Carrier Sense Multiple Access / Collision Detection (CSMA/CD)
 - Ethernet, IEEE 802.3
 - Token Bus
 - IEEE 802.4
 - Token Ring
 - IEEE 802.5

2. Modelling of telecommunication systems (part 1)

Random Access

- Stations transmit packets totally independently of each other as soon as new packets arrive
 - no prior actions to avoid collisions
 - theoretical maximum for the throughput is less than 20% of the LAN speed
- Assuming a fixed packet length,
 - a slotted system (slot = transmission time of a packet) doubles the theoretical maximum throughput

Analysis of ALOHA (1)

- (1) Assume that
 - the stations generate fixed length packets according to a Poisson process with intensity v
 - the packets are retransmitted until they reach without any collisions the destination
- Let T denote
 - the time needed to transmit a packet (stability requirement: v < 1/T)
- Two packets collide with each other
 - if and only if their interarrival time is < T
 - Collided packets are retransmitted after a random interval
- (2) Assume further that
 - the aggregate packet stream (including all the transmitted and retransmitted packets) still obeys a Poisson process (which is certainly not true) but with a higher intensity λ such that $\lambda < 1/T$

45

2. Modelling of telecommunication systems (part 1)

Analysis of ALOHA (2)

- Consider a station where a new packet arrives at time 0
 - No collisions during the transmission (0,+T) time if and only if no other packet arrivals (to any station) between time interval (-T,+T)
 - Due to assumption (2), this happens with probability $exp(-2\lambda T)$
- Thus,
 - the throughput v is $v = \lambda \cdot exp(-2\lambda T)$
- This is maximized by $\lambda_{max} = 1/(2T)$ corresponding to
 - an offered load of $\lambda_{max}T = 1/2 = 50\%$
- The maximum throughput v_{max} is

 $- v_{\text{max}} = \lambda_{\text{max}} \cdot \exp(-2\lambda_{\text{max}}T) = 1/(2eT) \approx 0.184/T \approx 20\% (1/T)$

Analysis of Slotted ALOHA

- (3) Assume then that
 - the packets are transmitted in slots of length T
- In this system, two packets collide with each other
 - if and only if they arrived during the same slot
 - Due to assumption (2), no collisons with probability $\exp(-\lambda T)$
- Thus,
 - the throughput v is $v = \lambda exp(-\lambda T)$
- This is maximized by $\lambda_{max} = 1/T$ corresponding to
 - an offered load of $\lambda_{max}T = 1 = 100\%$
- The maximum throughput ν_{max} is
 - $\nu_{\text{max}} = \lambda_{\text{max}} \cdot \exp(-\lambda_{\text{max}}T) = 1/(eT) \approx 0.368/T \approx 40\% \ (1/T)$
- Note that this is **double** to that of a pure ALOHA system

THE END	