2. Modelling of telecommunication systems (part 1)

Contents

- Telecommunication networks
- Network level: switching and routing
- Link level: multiplexing and concentration
- Shared media: multiple access

Telecommunication network

- A simple model of a telecommunication network consists of
- nodes
- terminals
- network nodes

- links between nodes
- Access network
- connects the terminals to the network nodes
- Trunk network
- connects the network nodes to each other

3

Shared medium as an access network

- In the previous model,
- connections between terminals and network nodes are point-topoint type (=> no resource sharing within the access netw.)
- In some cases, such as
- mobile telephone network
- local area network (LAN) connecting computers
the access network consists of
shared medium:
- users have to compete for the resources of this shared medium
- multiple access (MA)
techniques are needed

Network topologies

tree

ring

Network hierarchy

- Networks typically constructed level-by-level
- Relations to network topology
- flat topologies (topology within one level)
- hierarchial topologies
- One natural hierarchy:
- access vs. trunk network
- Traditionally:
- many hierarchial levels (5 in AT\&T)
- Current tendency:
- to reduce the number of levels in hierarchy
- "We see future large national networks with only three levels."

Example: Why networks? (1)

- Assume that
- there are $\mathrm{N}=100$ persons who want to be connected with each other
- Solution 1:

Separate networks

- point-to-point links with separate terminals for each user pair
- no switches
- no resource sharing
- very low utilization

Resource	Number $N(N-1)$	Max. Util 1\%
\square	$\mathrm{N}(\mathrm{N}-1) / 2$ 0	1%

Example: Why networks? (2)

- Simultaneous connections $A-B$ and $C-D$ in solution 1

Example: Why networks? (3)

- Still assume that
- there are $\mathrm{N}=100$ persons who want to be connected with each other
- Solution 2:

Fully meshed network

- one terminal per user
- one 1x(N-1) switch per user
- point-to-point links for each switch pair
- partial resource sharing
- better utilization

Resource	Number N	Max. Util. 100\%
\square	$N(N-1) / 2$ N	$\begin{gathered} 1 \% \\ 100 \% \end{gathered}$

Example: Why networks? (4)

- Simultaneous connections A-B and C-D in solution 2

Example: Why networks? (5)

- Still assume that
- there are $\mathrm{N}=100$ persons who want to be connected with each other
- Solution 3:

Star network

- one terminal per user
- just one NxN switch for the whole network
- NxN switch can be implemented with $N / 2$ parallel $N \times 1 / 1 \times N$ switch pairs
- complete resource sharing
- best utilization

Resource	Number	Max. Util.
0	N	100%
\square	N	100%
\square	1	100%

2. Modelling of telecommunication systems (part 1)

Example: Why networks? (6)

- Simultaneous connections A-B and C-D in solution 3

Contents

- Telecommunication networks
- Network level: switching and routing
- Link level: multiplexing and concentration
- Shared media: multiple access

Switching modes

- Circuit switching
- telephone networks
- mobile telephone networks
- even applied to data networks
- Packet switching
- data networks
- two possibilities
- connection oriented: e.g. X.25, Frame Relay
- connectionless: e.g. Internet (IP), SS7 (MTP)
- Cell switching
- fast packet switching with fixed length packets (cells): ATM
- integration of different traffic types (voice, data, video)
\Rightarrow multiservice networks

Circuit switching (1)

- Connection oriented:
- connections set up end-to-end before information transfer
- resources reserved for the whole duration of connection
- Information transfer as continuous stream

Circuit switching (2)

- Before information transfer
- delay (to set up the connection)
- During information transfer
- no overhead
- no extra delays

Connectionless packet switching (1)

- Connectionless:
- no connection set-up
- no resource reservation
- Information transfer as discrete packets
- varying length
- global address (of the destination)

17

Connectionless packet switching (2)

- Before information transfer
- no delays
- During information transfer
- overhead (header bytes)
- packet processing delays
- queueing delays (since packets compete for joint resources)

Connection oriented packet switching (1)

- Connection oriented:
- virtual connections set up end-to-end before information transfer
- no resource reservation
- Information transfer as discrete packets
- varying length
- local address (logical channel index)

Connection oriented packet switching (2)

- Before information transfer
- delay (to set up the virtual connection)
- During information transfer
- overhead (however, less than in connectionless mode)
- packet processing delays (less, due to the shorter address)
- queueing delays (since packets compete for joint resources)

Cell switching (1)

- Connection oriented:
- virtual connections set up end-to-end before information transfer
- resource reservation possible but not mandatory
- Information transfer as discrete packets (cells)
- fixed (small) length
- local address

21

Cell switching (2)

- Before information transfer
- delay (to set up the connection)
- During information transfer
- overhead (per packet even more than in connectionless mode)
- packet processing delays (less, due to the shorter address and the fixed length of cells)
- queueing delays (if resources not reserved beforehand)

Switching modes: summary

- Circuit switching
- suitable for real-time traffic (voice, RT-video, ...)
- inefficient for VBR traffic and data
- transparent but inflexible
- Cell switching
- quite flexible
- efficient use of network resources
- seq. integrity guaranteed
- real-time guarantees possible
- possible to integrate different traffic types
- Connection oriented packet switching
- quite flexible
- efficient use of network resources
- seq. integrity guaranteed
- no real-time guarantees
- Connectionless packet switching
- flexible and fault tolerant
- efficient use of network resources
- seq. integrity not guaranteed
- no real-time guarantees

Routing methods in telephone networks

- Fixed
- no alternative routes
- Hierarchic
- traditionally used in telephone networks
- alternative routes searched in a fixed order
- Dynamic (non-hierarchic)
- time-dependent (dynamic) routing tables
- AT\&T has shown some 15% improvement with routing performance with DNHR (dynamic non-hierarchial routing)

- Adaptive (non-hierarchic)

- state-dependent (adaptive) call-by-call routing decisions
- AT\&T's next generation: RTNR (real-time network routing)
- Another adaptive method: DAR (dynamic alternative routing) by BT

Contents

- Telecommunication networks
- Network level: switching and routing
- Link level: multiplexing and concentration
- Shared media: multiple access

Analogue vs. digital systems (1)

- Originally telecommunication networks (i.e. telephone networks) were purely analogical
- First: digital trunks between exchanges
- Then: digital exchanges
- In the current telephone network, the telephone itself and the access line are still based on the analogue technology
- ISDN and GSM are the first completely digital telephone networks (including the terminals and the access part)
- Packet switched networks have always been completely digital
- e.g. LANs
- Cell switched networks (ATM) are also completely digital

Analogue vs. digital systems (2)

- Analogical circuit switched system:
- one connection occupies a single one or a multiple of channels
- link capacity expressed in number of channels
- Digital circuit switched system:
- one connection occupies a single one or a multiple of channels
- channel capacity expressed in bits per second (bps, kbps, Mbps, ...)
- typically: 64 kbps
- link capacity expressed either in number of channels or in bits per second (being then a multiple of the channel capacity)
- Digital packet/cell switched system:
- link capacity occupied dynamically on-demand
- capacity demand (of a connection) expressed in bits per second
- link capacity expressed in bits per second

Transmission: multiplexing (1)

- Originally,
- each connection in a telephone network required its own physical link
- By multiplexing,
- the capacity of a single physical link is divided into multiple channels
- each connection typically occupies one channel
- thus, multiple connections can be conveyed by a single link
- The device implementing this is called a multiplexer

Transmission: multiplexing (2)

- In circuit switched networks, there are two different multiplexing techniques:
- frequency division multiplexing (FDM)
- time division multiplexing (TDM)
- In packet switched networks, there is just
- statistical multiplexing

2. Modelling of telecommunication systems (part 1)

Frequency division multiplexing (FDM)

- FDM
- oldest multiplexing technique
- used in analogue circuit switched systems
- fixed portion (frequency band) of the link bandwidth reserved for each channel
- FDM multiplexer is lossless
- input: n 1-channel physical connections
- output: $1 n$-channel physical connection

Time division multiplexing (TDM)

- TDM
- used in digital circuit switched systems
- information conveyed on a link transferred in frames of fixed length
- fixed portion (time slot) of each frame reserved for each channel
- TDM multiplexer is lossless
- input: n 1-channel physical connections
- output: 1 n-channel physical connection

Statistical multiplexing

- Statistical multiplexing
- used in digital packet/cell switched systems (e.g. Internet, ATM, ...)
- information transferred in packets of varying or fixed length
- each packet belongs to exactly one connection
- packet header includes the connection identifier
- link capacity reserved dynamically and asynchronously as packets arrive \Rightarrow need for buffering

Statistical multiplexer

- Statistical multiplexer is (typically) lossy
- input: n physical connections with link speeds $R_{i}(i=1, \ldots, n)$
- output: 1 physical connection with link speed $R \leq R_{1}+\ldots+R_{n}$
- However, the loss probability can be decreased by enlarging the buffer
- with an "infinite" buffer, it is enough that R exceeds the average aggregated input rate

2. Modelling of telecommunication systems (part 1)

Teletraffic model for a statistical multiplexer

- Multiplexer can be modelled as
- a pure waiting system (as below) if the buffer is large
- a mixed system if the buffer is small
- Traffic consists of packets
- each packet is transmitted with the full link speed R
- let L denote the average packet length
- packet service rate μ will be $\mu=R / L$
- stability requirement: packet arrival rate $\lambda<\mu$

Transmission: concentration

- Concentration
- used in circuit switched systems (analogue/digital)
- typically in the access network part for economical reasons
- however, switches are also (implicitly) concentrators
- In concentration,
- traffic (= connections) from n 1-channel links is concentrated on a single m-channel link, where $m<n$
- Idea: the probability that all n connections are active is typically very small

2. Modelling of telecommunication systems (part 1)

Concentrator

- Concentrator is lossy
- input: n 1-channel physical connections
- output: $1 m$-channel physical connection with $m<n$
- Outgoing link should be dimensioned (i.e. m should be chosen) so that
- the call blocking probability (that all m channels are occupied when a new call arrives) is small enough
- In other words: the quality of service requirement should be fulfilled

Teletraffic model for a concentrator

- Concentrator can be modelled as
- a pure loss system (as below) with m parallel servers
- Traffic consists of connections
- traffic generated by a finite number (n) of sources
\Rightarrow arrival rate λ is not constant but depends on the total number of sources (n) and the number of active sources $(x): \lambda=\lambda(n, x)$
- let h denote the average connection holding time
- service rate μ will be $\mu=1 / h$

2. Modelling of telecommunication systems (part 1)

Contents

- Telecommunication networks
- Network level: switching and routing
- Link level: multiplexing and concentration
- Shared media: multiple access

Multiple access techniques used in mobile telephone networks

- Mobile telephone networks are geographically divided into cells
- Each cell has its own base station
- The radio frequency band reserved for the network access (within a cell) is divided into channels
- The users (located in that cell) compete for these channels
- Dynamic channel assignment is made
- centralized by the base station
- Various multiple access methods:
- frequency division multiple access (FDMA)
- time division multiple access (TDMA)
- code division multiple access (CDMA)

FDMA and TDMA

- Frequency division multiple access (FDMA)
- used in analogue mobile networks, e.g. NMT
- radio frequency band reserved for the network divided into subbands (channels)
- each connection occupies one channel
- thus, simultaneous connections use separate frequency (sub)bands
- Time division multiple access (TDMA)
- used in digital mobile networks, e.g. GSM
- information transferred in frames of fixed length
- fixed portion (time slot) of each frame reserved for each channel
- each connection occupies one channel
- thus, simultaneous connections use the same frequency band
- utilization of the frequency band better than in FDMA

CDMA

- Code division multiple access (CDMA)
- used in digital mobile networks, e.g. IS-95 (USA)
- information coded before transfer in such a way that simultaneous transmissions do not interfere (too much)
- each code corresponds to a channel
- thus, simultaneous connections use the same frequency band
- in general, the utilization of the frequency band is better than in TDMA
- however, the notion "system capacity" in CDMA is elastic (contrary to FDMA and TDMA):
- the more codes (channels), the greater the interference!

Teletraffic modelling of various multiple access techniques

- All multiple access techniques mentioned above (FDMA, TDMA and CDMA) can be modelled as a pure loss system
- Traffic consists of calls
- calls either fresh or handovers
- fresh calls may arrive according to a Poisson process, but is it so with the handovers?
- due to handovers,
call holding time is now different from coversation holding time
- one more new feature: mobility modelling
- System capacity (that is, the number of parallel channels) depends on
- the width of the frequency band reserved for the network
- the multiple access technique used
- In CDMA, the system capacity depends additionally on
- the allowed level of interferation (that is, on the required quality of service)

Multiple access techniques in computer LANs

- A computer LAN (local area network) transfers packets between any stations connected to this LAN
- The stations compete for this joint transmission medium
- Dynamic channel assignment is made
- in a fully distributed manner by the stations themselves
- Various multiple access methods:
- Random Access
- ALOHA, Slotted ALOHA (originally in satellite links)
- Carrier Sense Multiple Access / Collision Detection (CSMA/CD)
- Ethernet, IEEE 802.3
- Token Bus
- IEEE 802.4
- Token Ring
- IEEE 802.5

Random Access

- Stations transmit packets totally independently of each other as soon as new packets arrive
- no prior actions to avoid collisions
- theoretical maximum for the throughput is less than 20% of the LAN speed
- Assuming a fixed packet length,
- a slotted system (slot = transmission time of a packet) doubles the theoretical maximum throughput

Analysis of ALOHA (1)

- (1) Assume that
- the stations generate fixed length packets according to a Poisson process with intensity v
- the packets are retransmitted until they reach without any collisions the destination
- Let T denote
- the time needed to transmit a packet (stability requirement: $v<1 / T$)
- Two packets collide with each other
- if and only if their interarrival time is < T
- Collided packets are retransmitted after a random interval
- (2) Assume further that
- the aggregate packet stream (including all the transmitted and retransmitted packets) still obeys a Poisson process (which is certainly not true) but with a higher intensity λ such that $\lambda<1 / T$

Analysis of ALOHA (2)

- Consider a station where a new packet arrives at time 0
- No collisions during the transmission $(0,+T)$ time if and only if no other packet arrivals (to any station) between time interval $(-T,+T)$
- Due to assumption (2), this happens with probability $\exp (-2 \lambda T)$
- Thus,
- the throughput v is $v=\lambda \cdot \exp (-2 \lambda T)$
- This is maximized by $\lambda_{\max }=1 /(2 T)$ corresponding to
- an offered load of $\lambda_{\max } T=1 / 2=50 \%$
- The maximum throughput $v_{\max }$ is
$-v_{\max }=\lambda_{\text {max }} \cdot \exp \left(-2 \lambda_{\max } T\right)=1 /(2 e T) \approx 0.184 / T \approx 20 \%(1 / T)$

Analysis of Slotted ALOHA

- (3) Assume then that
- the packets are transmitted in slots of length T
- In this system, two packets collide with each other
- if and only if they arrived during the same slot
- Due to assumption (2), no collisons with probability $\exp (-\lambda T)$
- Thus,
- the throughput v is $v=\lambda \cdot \exp (-\lambda T)$
- This is maximized by $\lambda_{\max }=1 / T$ corresponding to
- an offered load of $\lambda_{\max } T=1=100 \%$
- The maximum throughput $v_{\max }$ is
$-v_{\max }=\lambda_{\max } \cdot \exp \left(-\lambda_{\max } T\right)=1 /(e T) \approx 0.368 / T \approx 40 \%(1 / T)$
- Note that this is double to that of a pure ALOHA system

THE END

