a.	
	Laboration of Televerseuminetions Technology

lect01.ppt

S-38.145 - Introduction to Teletraffic Theory - Fall 1999

1

1. Introduction

Contents

- Purpose of Teletraffic Theory
- Teletraffic models
- Classical model for telephone traffic
- Classical model for data traffic

- Ideas:
 - the system serves the incoming traffic
 - the traffic is generated by the **users** of the system

1. Introduction

Interesting questions

- Given the system and incoming traffic, what is the quality of service experienced by the user?
- Given the incoming traffic and required quality of service, how should the system be dimensioned?
- Given the system and required quality of service, what is the maximum traffic load?

3

General purpose

- Determine **relationships** between the following three factors:
 - quality of service
 - traffic load
 - system capacity

5

- Telephone call
 - traffic = telephone calls by everybody
 - system = telephone network
 - quality of service = probability that the phone rings in the destination

Relationships between the three factors

• Qualitatively, the relationships are as follows:

• To describe the relationships quantitatively, **mathematical models** are needed

7

- "you never know, who calls you and when"
- It follows that the variables in these models are random variables, e.g.
 - number of ongoing calls
 - number of packets in a buffer
- Random variable is described by its distribution, e.g.
 - probability that there are *n* ongoing calls
 - probability that there are n packets in the buffer
- **Stochastic process** describes the temporal development of a random variable

Related fields

- Probability Theory
- Stochastic Processes
- Queueing Theory
- Statistical Analysis (traffic measurements)
- Operations Research
- Optimization Theory
- Decision Theory (Markov decision processes)
- Simulation Techniques (object oriented programming)

1. Introduction

Difference between the real system and the model

- Typically,
 - the model describes just one part or property of the real system under consideration and even from one point of view
 - the description is not very accurate but rather approximative
- Thus,
 - caution is needed when conclusions are drawn

9

Practical goals

- Network planning
 - dimensioning
 - optimization
 - performance analysis
- Network management and control
 - efficient operating
 - fault recovery
 - traffic management
 - routing
 - accounting

1. Introduction

Literature

• Teletraffic Theory

- Teletronikk (1995) Vol. 91, Nr. 2/3, Special Issue on "Teletraffic"
- S-38.118 course book: "Understanding Telecommunications 1", Ch. 10
- COST 242, Final report (1996) "Broadband Network Teletraffic", Eds. J. Roberts, U. Mocci, J. Virtamo, Springer
- J.M. Pitts and J.A. Schormans (1996) "Introduction to ATM Design and Performance", Wiley
- Queueing Theory
 - L. Kleinrock (1975) "Queueing Systems, Volume I: Theory", Wiley
 - L. Kleinrock (1976) "Queueing Systems, Volume II: Computer Applications", Wiley
 - D. Bertsekas and R. Gallager (1992) "Data Networks", 2nd ed., Prentice-Hall
 - P.G. Harrison and N.M. Patel (1993) "Performance Modelling of Communication Networks and Computer Architectures", Addison-Wesley

Contents

- Purpose of the Teletraffic Theory
- Teletraffic models
- Classical model for telephone traffic
- Classical model for data traffic

1. Introduction

Teletraffic models

- Two phases in modelling:
 - modelling of the incoming traffic => traffic model
 - modelling of the system itself => system model
- Two types of system models:
 - loss systems
 - waiting/queueing systems
- Next we will present a simple teletraffic model
 - describing a single resource
- These models can be combined to create models for whole telecommunication networks
 - loss network models
 - queueing network models

Simple teletraffic model

- **Customers arrive** at rate λ (customers per time unit)
 - $1/\lambda$ = average inter-arrival time
- Customers are **served** by *n* parallel **servers**
- When busy, a server serves at rate μ (customers per time unit)
 - $1/\mu$ = average service time of a customer
- There are *m* waiting places
- It is assumed that blocked customers (arriving in a full system) are lost

- Consider the simple teletraffic model presented above
 - What is the traffic model?
 - What is the system model?

Pure loss system

- No waiting places (m = 0)
 - If the system is full (with all *n* servers occupied) when a customer arrives, she is not served at all but lost
 - Some customers are lost
- From the customer's point of view, it is interesting to know e.g.
 - What is the probability that the system is full when she arrives?
- From the system's point of view, it is interesting to know e.g.
 - What is the utilization factor of the servers?

1. Introduction

Mixed system

- Finite number of waiting places $(0 < m < \infty)$
 - If all *n* servers are occupied but there are free waiting places when a customer arrives, she occupies one of the waiting places
 - If all *n* servers and all *m* waiting places are occupied when a customer arrives, she is not served at all but lost
 - Some customers are lost and some customers have to wait before getting served

- No customers are lost or even have to wait before getting served
- Sometimes,
 - this hypothetical model can be used to get some approximate results for a real system (with finite system capacity)
- Always,
 - it gives bounds for a real system (with finite system capacity)
 - it is much easier to analyze than the corresponding finite capacity models

1. Introduction

Contents

- Purpose of the Teletraffic Theory
- Teletraffic models
- Classical model for telephone traffic
- Classical model for data traffic

Classical model for telephone traffic

- Loss models have traditionally been used to describe (circuit-switched) telephone networks
 - Pioneering work made by Danish mathematician A.K. Erlang (1878-1929)

λ

- Consider a link between two telephone exchanges
 - traffic consists of the ongoing telephone calls on the link
- Erlang modelled this as a **pure loss system** (m = 0)
 - customer = call
 - λ = call arrival rate
 - service time = (call) holding time
 - $h = 1/\mu$ = average holding time
 - server = channel on the link
 - *n* = nr of channels on the link

Traffic intensity

• In telephone networks:

 $\mathsf{Traffic} \leftrightarrow \mathsf{Calls}$

- The amount of traffic is described by the traffic intensity a
- By definition, the traffic intensity *a* is the product of the arrival rate λ and the mean holding time *h*:

 $a = \lambda h$

- Note that the traffic intensity is a dimensionless quantity
- Anyway, the unit of the traffic intensity a is called erlang (erl)
 - traffic of one erlang means that, on the average, one channel is occupied

1. Introduction

- on the average, there are 1800 new cells in an l
- on the average, there are 1800 new calls in an hour, and
- the mean holding time is 3 minutes
- It follows that the traffic intensity is

a = 1800 * 3 / 60 = 90 erlang

• If the mean holding time increases from 3 minutes to 10 minutes, then

a = 1800 * 10 / 60 = 300 erlang

Characteristic traffic

- Here are typical characteristic traffics for some subscriber categories (of ordinary telephone users):
 - private subscriber: 0.01 - 0.04 erlang business subscriber:
 - private branch exchange (PBX):
 - pay phone: 0.07 erlang
- This means that, for example,
 - a typical private subscriber uses from 1% to 4% of her time in the telephone (during so called "busy hour")
- Referring to the previous example, note that
 - it takes between 2250 9000 private subscribers to generate 90 erlang traffic

- In a loss system some calls are lost
 - a call is lost if all *n* channels are occupied when the call arrives
 - the term **blocking** refers to this event
- There are (at least) two different types of blocking quantities:
 - **Call blocking** B_c = probability that an arriving call finds all *n* channels occupied = the fraction of calls that are lost
 - Time blocking B_t = probability that all *n* channels are occupied at an arbitrary time = the fraction of time that all n channels are occupied
- The two blocking quantities are not necessarily equal
 - If calls arrive according to a Poisson process, then $B_c = B_t$
- Call blocking is a better measure for the quality of service experienced by the subscribers but, typically, time blocking is easier to calculate

- 0.03 0.06 erlang
- 0.10 0.60 erlang

Call rates

- In a loss system each call is either lost or carried
- Thus, there are three types of call rates:
 - $\lambda_{offered}$ = arrival rate of all call attempts
 - $\lambda_{carried}$ = arrival rate of carried calls
 - $-\lambda_{lost}$ = arrival rate of lost calls

• Note:

$$\lambda_{\text{offered}} = \lambda_{\text{carried}} + \lambda_{\text{lost}} = \lambda$$
$$\lambda_{\text{carried}} = \lambda(1 - B_{\text{c}})$$
$$\lambda_{\text{lost}} = \lambda B_{\text{c}}$$

29

1. Introduction

Traffic streams

- The three call rates lead to the following three traffic concepts:
 - Traffic offered $a_{offered} = \lambda_{offered} h$
 - Traffic carried $a_{carried} = \lambda_{carried} h$
 - Traffic lost $a_{\text{lost}} = \lambda_{\text{lost}} h$
- Note:

 $a_{\text{offered}} = a_{\text{carried}} + a_{\text{lost}} = a$ $a_{\text{carried}} = a(1 - B_{\text{c}})$ $a_{\text{lost}} = aB_{\text{c}}$

- Traffic offered and traffic lost are hypothetical quantities, but traffic carried is **measurable** (key: Little's formula):
 - Traffic carried = the average number of occupied channels on the link

Teletraffic analysis

- System capacity
 - n = number of channels on the link
- Traffic load
 - a = (offered) traffic intensity
- Quality of service (from the subscribers' point of view)
 - $-B_{c}$ = probability that an arriving call finds all *n* channels occupied
- If we assume an M/GInIn loss system, that is
 - calls arrive according to a **Poisson process** (with rate λ)
 - call holding times are independently and identically distributed according to any distribution with mean \boldsymbol{h}
- Then the quantitive relation between the three factors is given by the **Erlang's blocking formula**

1. Introduction

Erlang's blocking formula

$$B_{\rm c} = \operatorname{Erl}(n, a) = \frac{\frac{a^n}{n!}}{\sum_{i=0}^n \frac{a^i}{i!}}$$

- Note: $n!=n \cdot (n-1) \cdot \ldots \cdot 2 \cdot 1$
- Other names:
 - Erlang's formula
 - Erlang's B-formula
 - Erlang's loss formula
 - Erlang's first formula

Example

• Assume that there are n = 4 channels on a link and the offered traffic is a = 2.0 erlang. Then the call blocking probability B_c is

$$B_{\rm c} = {\rm Erl}(4,2) = \frac{\frac{2^4}{4!}}{1+2+\frac{2^2}{2!}+\frac{2^3}{3!}+\frac{2^4}{4!}} = \frac{\frac{16}{24}}{1+2+\frac{4}{2}+\frac{8}{6}+\frac{16}{24}} = \frac{2}{21} \approx 9.5\%$$

• If the link capacity is raised to n = 6 channels, then B_c reduces to

$$B_{\rm c} = {\rm Erl}(6,2) = \frac{\frac{2^6}{6!}}{1+2+\frac{2^2}{2!}+\frac{2^3}{3!}+\frac{2^4}{4!}+\frac{2^5}{5!}+\frac{2^6}{6!}} \approx 1.2\%$$

-	_
- >	- 7
~	~

1. Introduction

Required capacity vs. traffic

• Given the quality of service requirement that $B_c < 20\%$, the required capacity *n* depends on the traffic intensity *a* as follows:

34

1. Introduction

Required quality of service vs. traffic

• Given the capacity n = 10 channels, the required quality of service $1-B_c$ depends on the traffic intensity *a* as follows:

1. Introduction

Contents

- Purpose of the Teletraffic Theory
- Teletraffic models
- Classical model for telephone traffic
- Classical model for data traffic

37

1. Introduction

Classical model for data traffic

- Queueing models are suitable for describing (packet-switched) data networks
 - Pioneering work made by many people in 60's and 70's (ARPANET)

λ

- Consider a link between two packet routers
 - traffic consists of data packets transmitted on the link
- This can be modelled as a **pure waiting system** with a single server (n = 1) and an infinite buffer $(m = \infty)$
 - customer = packet
 - λ = packet arrival rate
 - *L* = average packet length (data units)
 - server = link, waiting places = buffer
 - R = link's speed (data units per time unit)
 - service time = packet transmission time
 - $1/\mu = L/R$ = average packet transmission time

1. Introduction

Traffic load

• In packet-switched data networks:

 $\mathsf{Traffic} \leftrightarrow \mathsf{Packets}$

- The amount of traffic is described by the traffic load ρ
- By definition, the traffic load ρ is the quotient between the arrival rate λ and the service rate $\mu = R/L$:

$$\rho = \frac{\lambda}{\mu} = \frac{\lambda L}{R}$$

- Note that the traffic load is a **dimensionless** quantity
 - It can also be called the traffic intensity (as in loss systems)
 - By Little's formula, it tells the utilization factor of the server

Example

- Consider a link between two packet routers. Assume that,
 - on the average, 10 new packets arrive in a second,
 - the mean packet length is 400 bytes, and
 - the link speed is 64 kbps.
- It follows that the traffic load is

 $\rho = 10 * 400 * 8 / 64,000 = 0.5 = 50\%$

• If the link speed is increased to 150 Mbps, then the load is just

 $\rho = 10 * 400 * 8 / 150,000,000 = 0.0002 = 0.02\%$

- Note:
 - 1 byte = 8 bits
 - 1 kbps = 1 kbit/s = 1 kbit per second = 1,000 bits per second
 - 1 Mbps = 1 Mbit/s = 1 Mbit per second = 1,000,000 bits per second

41

1. Introduction

Teletraffic analysis

- System capacity
 - R = link speed in kbps
- Traffic load
 - λ = packet arrival rate in packet/s (considered here as a variable)
 - L = average packet length in kbits (assumed here to be constant 1 kbit)
- Quality of service (from the users' point of view)
 - P_z = probability that a packet has to wait "too long", that is longer than a given reference value z (assumed here to be constant 0.1 s)
- If we assume an M/M/1 queueing system, that is
 - calls arrive according to a Poisson process (with rate λ)
 - packet lengths are independent and identically distributed according to **exponential** distribution with mean L
- Then the quantitive relation between the three factors is given by the following waiting time formula

Waiting time formula for an M/M/1 queue

$$P_{z} = \text{Wait}(R, \lambda; L, z) = \begin{cases} \frac{\lambda L}{R} \exp(-(\frac{R}{L} - \lambda)z), & \text{if } \lambda L < R \ (\rho < 1) \\ 1, & \text{if } \lambda L \ge R \ (\rho \ge 1) \end{cases}$$

• Note:

- The system is **stable** only in the former case ($\rho < 1$)

43

1. Introduction

Example

• Assume that packets arrive at rate $\lambda = 50$ packet/s and the link speed is R = 64 kbps. Then the probability P_z that an arriving packet has to wait too long (i.e. longer than z = 0.1 s) is

$$P_z = \text{Wait}(64, 50; 1, 0.1) = \frac{50}{64} \exp(-1.4)) \approx 19\%$$

• Note that the system is stable, since

$$\rho = \frac{\lambda L}{R} = \frac{50}{64} < 1$$

Required link speed vs. arrival rate

• Given the quality of service requirement that $P_z < 20\%$, the required link speed *R* depends on the arrival rate λ as follows:

1. Introduction

1. Introduction

1. Introduction

