8. Queueing systems
Contents

- Refresher: Simple teletraffic model
- $M/M/1$ (1 server, ∞ waiting places)
- $M/M/n$ (n servers, ∞ waiting places)
8. Queueing systems

Simple teletraffic model

- **Customers arrive** at rate λ (customers per time unit)
 - $1/\lambda$ = average inter-arrival time
- Customers are **served** by n parallel **servers**
- When busy, a server serves at rate μ (customers per time unit)
 - $1/\mu$ = average service time of a customer
- There are m **waiting** places
Pure waiting system

- Infinite number of waiting places \((m = \infty)\)
 - If all \(n\) servers are occupied when a customer arrives, she occupies one of the waiting places
 - No customers are lost but some of them have to wait before getting served
- From the customer’s point of view, it is interesting to know e.g.
 - what is the probability that she has to wait “too long”?
Consider a single server \((n = 1)\) queueing system

Queueing discipline determines the way the server serves the customers
- It tells
 - whether the customers are served one-by-one or simultaneously
- Furthermore, if the customers are served one-by-one, it tells
 - in which order they are taken into the service
- And if the customers are served simultaneously, it tells
 - how the service capacity is shared among them

A queueing discipline is called **work-conserving** if customers are served with full service rate \(\mu\) whenever the system is non-empty
Various work-conserving queueing disciplines

- First In First Out (FIFO) = First Come First Served (FCFS)
 - the most ordinary queueing discipline (“queue”)
 - customers served one-by-one (with full service rate μ)
 - always serve the customer that has been waiting for the longest time
- Last In First Out (LIFO) = Last Come First Served (LCFS)
 - “stack”
 - customers served one-by-one (with full service rate μ)
 - always serve the customer that has been waiting for the shortest time
- Processor Sharing (PS)
 - “fair queueing”
 - customers served simultaneously
 - when i customers in the system, each of them served with equal rate μ/i
8. Queueing systems

Contents

• Refresher: Simple teletraffic model
• M/M/1 (1 server, ∞ waiting places)
• M/M/n (n servers, ∞ waiting places)
8. Queueing systems

M/M/1 queue

- Consider the following simple teletraffic model:
 - Infinite number of independent customers \((k = \infty)\)
 - Interarrival times are IID and exponentially distributed with mean \(1/\lambda\)
 - so, customers arrive according to a Poisson process with intensity \(\lambda\)
 - One server \((n = 1)\)
 - Service times are IID and exponentially distributed with mean \(1/\mu\)
 - Infinite number of waiting places \((m = \infty)\)
 - Default queueing discipline: FIFO
- Using Kendall’s notation, this is an **M/M/1 queue**
 - more precisely: M/M/1-FIFO queue
- Notation:
 - \(\rho = \lambda/\mu\) = traffic load
Interesting random variables

- \(X \) = number of customers in the system at an arbitrary time
 = queue length in equilibrium
- \(X^* \) = number of customers in the system at an (typical) arrival time
 = queue length seen by an arriving customer
- \(W \) = waiting time of a (typical) customer
- \(S \) = service time of a (typical) customer
- \(D = W + S \) = total time in the system of a (typical) customer = delay
Let $X(t)$ denote the number of customers in the system at time t

- Assume that $X(t) = i$ at some time t, and consider what happens during a short time interval $(t, t+h]$:
 - with prob. $\lambda h + o(h)$, a new customer arrives (state transition $i \rightarrow i+1$)
 - if $i > 0$, then, with prob. $\mu h + o(h)$, a customer leaves the system (state transition $i \rightarrow i-1$)

Process $X(t)$ is clearly a Markov process with state transition diagram

Note that process $X(t)$ is an irreducible birth-death process with an infinite state space $S = \{0,1,2,...\}$
8. Queueing systems

Equilibrium distribution (1)

- Local balance equations (LBE):

\[\pi_i \lambda = \pi_{i+1} \mu \quad \text{(LBE)} \]

\[\Rightarrow \quad \pi_{i+1} = \frac{\lambda}{\mu} \pi_i = \rho \pi_i \]

\[\Rightarrow \quad \pi_i = \rho^i \pi_0, \quad i = 0, 1, 2, \ldots \]

- Normalizing condition (N):

\[\sum_{i=0}^{\infty} \pi_i = \pi_0 \sum_{i=0}^{\infty} \rho^i = 1 \quad \text{(N)} \]

\[\Rightarrow \quad \pi_0 = \left(\sum_{i=0}^{\infty} \rho^i \right)^{-1} = \left(\frac{1}{1-\rho} \right)^{-1} = 1 - \rho, \quad \text{if } \rho < 1 \]
8. Queueing systems

Equilibrium distribution (2)

• Thus, for a stable system ($\rho < 1$), the equilibrium distribution exists and is a geometric distribution:

\[
\rho < 1 \implies X \sim \text{Geom}(\rho)
\]

\[
P\{X = i\} = \pi_i = (1 - \rho)\rho^i, \quad i = 0,1,2,\ldots
\]

\[
E[X] = \frac{\rho}{1-\rho}, \quad D^2[X] = \frac{\rho}{(1-\rho)^2}
\]

• Remarks:
 – This result is valid for any work-conserving queueing discipline
 • FIFO, LIFO, PS, ...
 – This result is not insensitive to the service time distribution as far as the FIFO queueing discipline is concerned
 – However, for any symmetric queueing discipline (such as LIFO or PS) the result is, indeed, insensitive to the service time distribution
Mean queue length $E[X]$ vs. traffic load ρ
8. Queueing systems

Recall Little’s formula

- Consider a system where
 - new customers arrive at rate λ
- Assume stability:
 - Every now and then, the system is empty
- Little’s formula:

$$\overline{N} = \text{average nr of customers in the system}$$

$$\overline{T} = \text{average time a customer spends in the system}$$

$$\overline{N} = \lambda \overline{T}$$

Very useful formula: does not require PASTA property, works for all STABLE systems
Mean delay

- Let D denote the total time (delay) in the system of a (typical) customer including both the waiting time W and the service time S: $D = W + S$
- Little's formula: $E[X] = \lambda \cdot E[D]$. Thus,

\[
E[D] = \frac{E[X]}{\lambda} = \frac{1}{\lambda} \cdot \frac{\rho}{1 - \rho} = \frac{1}{\mu} \cdot \frac{1}{1 - \rho} = \frac{1}{\mu - \lambda}
\]

- Remarks:
 - The mean delay is the same for all **work-conserving** queueing disciplines
 - FIFO, LIFO, PS, ...
 - But the variance and other moments are different!
8. Queueing systems

Mean delay $E[D]$ vs. traffic load ρ

![Graph showing mean delay $E[D]$ vs. traffic load ρ.]
8. Queueing systems

Mean waiting time

• Let W denote the waiting time of a (typical) customer
• Since $W = D - S$, we have

$$E[W] = E[D] - E[S] = \frac{1}{\mu} \cdot \frac{1}{1-\rho} - \frac{1}{\mu} = \frac{1}{\mu} \cdot \frac{\rho}{1-\rho}$$

• Remarks:
 – The mean waiting time is the same for all work-conserving queueing disciplines
 • FIFO, LIFO, PS, ...
 – But the variance and other moments are different!
8. Queueing systems

Waiting time distribution (1)

- Let W denote the waiting time of a (typical) customer
- Let X^* denote the number of customers in the system at the arrival time
- PASTA: $P\{X^* = i\} = P\{X = i\} = \pi_i$.
- Assume now, for a while, that $X^* = i$
 - Service times S_2, \ldots, S_i of the waiting customers are IID and $\sim \text{Exp}(\mu)$
 - Due to the memoryless property of the exponential distribution, the remaining service time S_1^* of the customer in service also follows $\text{Exp}(\mu)$-distribution (and is independent of everything else)
 - Due to the FIFO queueing discipline, $W = S_1^* + S_2 + \ldots + S_i$
 - Construct a Poisson (point) process τ_n by defining $\tau_1 = S_1^*$ and $\tau_n = S_1^* + S_2 + \ldots + S_n$, $n \geq 2$. Now (since $X^* = i$): $W > t \iff \tau_i > t$
Waiting time distribution (2)

- Since $W = 0 \Leftrightarrow X^* = 0$, we have

\[P\{W = 0\} = P\{X^* = 0\} = \pi_0 = 1 - \rho \]

\[P\{W > t\} = \sum_{i=1}^{\infty} P\{W > t \mid X^* = i\} P\{X^* = i\} \]

\[= \sum_{i=1}^{\infty} P\{\tau_i > t\} \pi_i = \sum_{i=1}^{\infty} P\{\tau_i > t\} (1 - \rho) \rho^i \]

- Denote by $A(t)$ the Poisson (counter) process corresponding to τ_n
 - It follows that: $\tau_i > t \Leftrightarrow A(t) \leq i-1$
 - On the other hand, we know that $A(t) \sim$ Poisson (μt). Thus,

\[P\{\tau_i > t\} = P\{A(t) \leq i - 1\} = \sum_{j=0}^{i-1} \frac{\mu^j}{j!} e^{-\mu} \]
8. Queueing systems

Waiting time distribution (3)

- By combining the previous formulas, we get

\[
P\{W > t\} = \sum_{i=1}^{\infty} P\{\tau_i > t\} (1 - \rho) \rho^i
\]

\[
= \sum_{i=1}^{\infty} \sum_{j=0}^{i-1} \frac{(\mu t)^j}{j!} e^{-\mu t} (1 - \rho) \rho^i
\]

\[
= \rho \sum_{j=0}^{\infty} \frac{(\mu t \rho)^j}{j!} e^{-\mu t} (1 - \rho) \sum_{i=j+1}^{\infty} \rho^{i-(j+1)}
\]

\[
= \rho \sum_{j=0}^{\infty} \frac{(\mu t \rho)^j}{j!} e^{-\mu t} = \rho e^{\mu t \rho} e^{-\mu t} = \rho e^{-\mu (1 - \rho) t}
\]
8. Queueing systems

Waiting time distribution (4)

- Waiting time W can thus be presented as a product $W = JD$ of two independent random variables $J \sim \text{Bernoulli}(\rho)$ and $D \sim \text{Exp}(\mu(1-\rho))$:

\[
P\{W = 0\} = P\{J = 0\} = 1 - \rho
\]

\[
P\{W > t\} = P\{J = 1, D > t\} = \rho \cdot e^{-\mu(1-\rho)t}, \quad t > 0
\]

\[
E[W] = E[J]E[D] = \rho \cdot \frac{1}{\mu(1-\rho)} = \frac{1}{\mu} \cdot \frac{\rho}{1-\rho}
\]

\[
E[W^2] = P\{J = 1\}E[D^2] = \rho \cdot \frac{2}{\mu^2(1-\rho)^2} = \frac{1}{\mu^2} \cdot \frac{2\rho}{(1-\rho)^2}
\]

\[
D^2[W] = E[W^2] - E[W]^2 = \frac{1}{\mu^2} \cdot \frac{\rho(2-\rho)}{(1-\rho)^2}
\]
8. Queueing systems

Contents

• Refresher: Simple teletraffic model
• M/M/1 (1 server, ∞ waiting places)
• M/M/n (n servers, ∞ waiting places)
8. Queueing systems

M/M/n queue

- Consider the following simple teletraffic model:
 - Infinite number of independent customers \(k = \infty \)
 - Interarrival times are IID and exponentially distributed with mean \(1/\lambda \)
 - so, customers arrive according to a Poisson process with intensity \(\lambda \)
 - Finite number of servers \(n < \infty \)
 - Service times are IID and exponentially distributed with mean \(1/\mu \)
 - Infinite number of waiting places \(m = \infty \)
 - Default queueing discipline: FCFS

- Using Kendall’s notation, this is an **M/M/n queue**
 - more precisely: M/M/n-FCFS queue

- Notation:
 - \(\rho = \lambda/(n\mu) = \) traffic load
Let $X(t)$ denote the number of customers in the system at time t

- Assume that $X(t) = i$ at some time t, and consider what happens during a short time interval $(t, t+h)$:
 - with prob. $\lambda h + o(h)$, a new customer arrives (state transition $i \rightarrow i+1$)
 - if $i > 0$, then, with prob. $\min\{i,n\}\cdot\mu h + o(h)$, a customer leaves the system (state transition $i \rightarrow i-1$)

- Process $X(t)$ is clearly a Markov process with state transition diagram

- Note that process $X(t)$ is an irreducible birth-death process with an infinite state space $S = \{0,1,2,\ldots\}$
Queueing systems

Equilibrium distribution (1)

- Local balance equations (LBE) for $i < n$:

$$\pi_i \lambda = \pi_{i+1} (i+1) \mu$$

$\implies \pi_{i+1} = \frac{\lambda}{(i+1)\mu} \pi_i = \frac{n\rho}{i+1} \pi_i$

$\implies \pi_i = \frac{(n\rho)^i}{i!} \pi_0, \quad i = 0, 1, \ldots, n$

- Local balance equations (LBE) for $i \geq n$:

$$\pi_i \lambda = \pi_{i+1} n \mu$$

$\implies \pi_{i+1} = \frac{\lambda}{n\mu} \pi_i = \rho \pi_i$

$\implies \pi_i = \rho^{i-n} \pi_n = \rho^{i-n} \frac{(n\rho)^n}{n!} \pi_0 = \frac{n^n \rho^i}{n!} \pi_0, \quad i = n, n+1, \ldots, 24$
8. Queueing systems

Equilibrium distribution (2)

- Normalizing condition (N):

\[\sum_{i=0}^{\infty} \pi_i = \pi_0 \left(\sum_{i=0}^{n-1} \frac{(n\rho)^i}{i!} + \sum_{i=n}^{\infty} \frac{n^n \rho^i}{n!} \right) = 1 \] \(\text{(N)} \)

\[\Rightarrow \quad \pi_0 = \left(\sum_{i=0}^{n-1} \frac{(n\rho)^i}{i!} + \frac{(n\rho)^n}{n!} \sum_{i=n}^{\infty} \frac{\rho^i}{i} \right)^{-1} \]

\[= \left(\sum_{i=0}^{n-1} \frac{(n\rho)^i}{i!} + \frac{(n\rho)^n}{n!(1-\rho)} \right)^{-1} = \frac{1}{\alpha + \beta}, \quad \text{if } \rho < 1 \]

Notation: \(\alpha = \sum_{i=0}^{n-1} \frac{(n\rho)^i}{i!}, \quad \beta = \frac{(n\rho)^n}{n!(1-\rho)} \)
8. Queueing systems

Equilibrium distribution (3)

- Thus, for a **stable** system ($\rho < 1$, that is: $\lambda < n\mu$), the equilibrium distribution exists and is as follows:

$$\rho < 1 \implies$$

$$P\{X = i\} = \pi_i = \begin{cases}
\frac{(n\rho)^i}{i!} \cdot \frac{1}{\alpha + \beta}, & i = 0,1,\ldots,n \\
\frac{n^n \rho^i}{n!} \cdot \frac{1}{\alpha + \beta}, & i = n, n+1,\ldots
\end{cases}$$

For $n = 1$:

$$\alpha = 1, \quad \beta = \frac{\rho}{1-\rho}, \quad \pi_0 = \frac{1}{\alpha + \beta} = 1 - \rho$$

For $n = 2$:

$$\alpha = 1 + 2\rho, \quad \beta = \frac{2\rho^2}{1-\rho}, \quad \pi_0 = \frac{1}{\alpha + \beta} = \frac{1-\rho}{1+\rho}$$
Probability of waiting

- Let p_W denote the probability that an arriving customer has to wait.
- Let X^* denote the number of customers in the system at an arrival time.
- An arriving customer has to wait whenever all the servers are occupied at her arrival time. Thus,

$$p_W = P\{X^* \geq n\}$$

- PASTA: $P\{X^* = i\} = P\{X = i\} = \pi_i$. Thus,

$$p_W = P\{X^* \geq n\} = \sum_{i=n}^{\infty} \pi_i = \sum_{i=n}^{\infty} \pi_0 \cdot \frac{n^n \rho^i}{i!} = \pi_0 \cdot \frac{(n\rho)^n}{n!(1-\rho)} = \frac{\beta}{\alpha + \beta}$$

- $n = 1$: $p_W = \rho$
- $n = 2$: $p_W = \frac{2\rho^2}{1+\rho}$
Mean number of waiting customers

- Let X_W denote the number of waiting customers in equilibrium
- Then

$$E[X_W] = \sum_{i=n}^{\infty} (i-n)\pi_i = \pi_0 \frac{(n\rho)^n}{n!(1-\rho)} \sum_{i=n}^{\infty} (i-n) \cdot (1-\rho) \rho^{i-n}$$

$$= p_W \cdot \frac{\rho}{1-\rho}$$

For $n = 1$:

$$E[X_W] = p_W \cdot \frac{\rho}{1-\rho} = \frac{\rho^2}{1-\rho}$$

For $n = 2$:

$$E[X_W] = p_W \cdot \rho \cdot \frac{2\rho^2}{1+\rho} \cdot \frac{\rho}{1-\rho} = \frac{2\rho^3}{1-\rho^2}$$
8. Queueing systems

Mean waiting time

- Let W denote the waiting time of a (typical) customer
- Little’s formula: $E[X_W] = \lambda \cdot E[W]$. Thus,

$$E[W] = \frac{E[X_W]}{\lambda} = \frac{1}{\lambda} \cdot p_W \cdot \frac{\rho}{1 - \rho} = \frac{1}{\mu} \cdot \frac{p_W}{n(1 - \rho)} = p_W \cdot \frac{1}{n\mu - \lambda}$$

$n = 1$: $E[W] = \frac{1}{\mu} \cdot \frac{p_W}{1 - \rho} = \frac{\rho}{\mu \cdot (1 - \rho)}$

$n = 2$: $E[W] = \frac{1}{\mu} \cdot \frac{p_W}{2(1 - \rho)} = \frac{\rho^2}{\mu \cdot (1 - \rho^2)}$
Mean delay

- Let D denote the total time (delay) in the system of a (typical) customer including both the waiting time W and the service time S: $D = W + S$
- Then,

\[
E[D] = E[W] + E[S] = \frac{1}{\mu} \left(\frac{pW}{n(1-\rho)} + 1 \right) = pW \cdot \frac{1}{n\mu - \lambda} + \frac{1}{\mu}
\]

\[
n = 1: \quad E[D] = \frac{1}{\mu} \left(\frac{pW}{1-\rho} + 1 \right) = \frac{1}{\mu} \cdot \left(\frac{\rho}{1-\rho} + 1 \right) = \frac{1}{\mu} \cdot \frac{1}{1-\rho}
\]

\[
n = 2: \quad E[D] = \frac{1}{\mu} \cdot \frac{pW}{2(1-\rho)} = \frac{1}{\mu} \cdot \left(\frac{\rho^2}{1-\rho^2} + 1 \right) = \frac{1}{\mu} \cdot \frac{1}{1-\rho^2}
\]
8. Queueing systems

Mean queue length

- Let X denote the number of customers in the system (queue length) in equilibrium.
- Little’s formula: $E[X] = \lambda \cdot E[D]$. Thus,

$$E[X] = \lambda \cdot E[D] = p_W \cdot \frac{\lambda}{n\mu - \lambda} + \frac{\lambda}{\mu} = p_W \cdot \frac{\rho}{1 - \rho} + n\rho$$

For $n = 1$:

$$E[X] = p_W \cdot \frac{\rho}{1 - \rho} + \rho = \rho \cdot \frac{\rho}{1 - \rho} + \rho = \frac{\rho}{1 - \rho}$$

For $n = 2$:

$$E[X] = p_W \cdot \frac{\rho}{1 - \rho} + 2\rho = \frac{2\rho^2}{1 + \rho} \cdot \frac{\rho}{1 - \rho} + 2\rho = \frac{2\rho}{1 - \rho^2}$$
8. Queueing systems

Waiting time distribution (1)

- Let W denote the waiting time of a (typical) customer
- Let X^* denote the number of customers in the system at the arrival time
- The customer has to wait only if $X^* \geq n$. This happens with prob. p_W.
- Under the assumption that $X^* = i \geq n$, the system, however, looks like an ordinary M/M/1 queue with arrival rate λ and service rate $n\mu$.
 - Let W' denote the waiting time of a (typical) customer in this M/M/1 queue
 - Let $X^{*'}$ denote the number of customers in the system at the arrival time
- It follows that

$$P\{W = 0\} = 1 - p_W$$

$$P\{W > t\} = P\{X^* \geq n\} P\{W > t \mid X^* \geq n\}$$

$$= p_W \cdot P\{W' > t \mid X^{*'} \geq 1\} = p_W \cdot e^{-n\mu(1-\rho)t}, \quad t > 0$$
8. Queueing systems

Waiting time distribution (2)

- Waiting time W can thus be presented as a product $W = JD'$ of two indep. random variables $J \sim \text{Bernoulli}(p_W)$ and $D' \sim \text{Exp}(n\mu(1-\rho))$:

$$P\{W = 0\} = P\{J = 0\} = 1 - p_W$$

$$P\{W > t\} = P\{J = 1, D' > t\} = p_W \cdot e^{-n\mu(1-\rho)t}, \quad t > 0$$

$$E[W] = E[J]E[D'] = p_W \cdot \frac{1}{n\mu(1-\rho)} = \frac{1}{\mu} \cdot \frac{p_W}{n(1-\rho)}$$

$$E[W^2] = P\{J = 1\}E[D'^2] = p_W \cdot \frac{2}{n^2 \mu^2 (1-\rho)^2} = \frac{1}{\mu^2} \cdot \frac{2p_W}{n^2 (1-\rho)^2}$$

$$D^2[W] = E[W^2] - E[W]^2 = \frac{1}{\mu^2} \cdot \frac{p_W(2-p_W)}{n^2 (1-\rho)^2}$$
Example (1)

• Printer problem
 – Consider the following two different configurations:
 • One rapid printer (IID printing times \(\sim \text{Exp}(2\mu) \))
 • Two slower parallel printers (IID printing times \(\sim \text{Exp}(\mu) \))
 – Criterion: minimize mean delay \(E[D] \)
 • One rapid printer (M/M/1 model with \(\rho = \lambda/(2\mu) \)):

\[
E[D_1] = \frac{1}{2\mu} \cdot \frac{1}{1-\rho}
\]

• Two slower printers (M/M/2 model with \(\rho = \lambda/(2\mu) \)):

\[
E[D_2] = \frac{1}{\mu} \cdot \frac{1}{1-\rho^2} = \frac{1}{2\mu} \cdot \frac{2}{(1-\rho)(1+\rho)} = E[D_1] \cdot \frac{2}{1+\rho} > E[D_1]
\]
Example (2)

\[\frac{E[D_1]}{E[D_2]} \]

Traffic load \(\rho \)
8. Queueing systems

THE END