

12. Traffic engineering

Contents

- Topology
- Traffic matrix
- Traffic engineering
- Load balancing

Topology

- A telecommunication network consists of nodes and links
 - Let *N* denote the set of nodes indexed with *n*
 - Let J denote the set of nodes indexed with n
- Example:
 - $N = \{a, b, c, d, e\}$
 - $J = \{1, 2, 3, \dots, 12\}$
 - link $1 \mbox{ from node } a \mbox{ to node } b$
 - $\ \ \text{link} \ 2 \ \text{from node} \ b \ \text{to node} \ a \\$
- Let c_j denote the capacity of link j (bps)

Paths

- We define a **path** (= route) as a
 - set of consecutive links connecting two nodes
 - Let *P* denote the set of paths indexed with *p*
- Example:
 - three paths from node a to node c:
 - red path consisting of links 1 and 3
 - green path consisting of links 11 and 6
 - blue path consisting of links 10, 8 and 6

Path matrix

- Each path consists of a set of links
- This connection is described by the **path matrix A**,for which
 - element $a_{jp} = 1$ if $j \in p$, that is, link *j* belongs to path *p*
 - otherwise $a_{jp} = 0$
- Example:
 - three columns of a path matrix

	ac1	ac2	ac3
1	1	0	0
2	0	0	0
3	1	0	0
4	0	0	0
5	0	0	0
6	0	1	1
7	0	0	0
8	0	0	1
9	0	0	0
10	0	0	1
11	0	1	0
12	0	0	0

Shortest paths

If each link *j* is associated with a correponding weight *w_j*, the length *l_p* of path *p* is given by

$$l_p = \sum_{j \in p} w_j$$

- With unit link weights $w_j = 1$, path length = hop count
- Example:
 - two shortest paths (with length 2) from node a to node c

Contents

- Topology
- Traffic matrix
- Traffic engineering
- Load balancing

12. Traffic engineering

Traffic matrix (1)

- Traffic in a network is described by the **traffic matrix** T, for which
 - element t_{nm} tells the traffic
 demand (bps) from origin node
 n to destination node m
 - Aggregated traffic of all flows with the same origin and destination
 - Aggregated traffic during a time interval, e.g. busy hour or "typical 5-minute interval"
- Example:
 - Traffic demand from origin a to destination c is t_{ac} (bps)

Traffic matrix (2)

- Below we present the traffic demands in a vector form
 - Let *K* denote the set of origindestination pairs (**OD-pairs**) indexed with *k*
- Traffic demands constitute a vector **x**, for which
 - element x_k tells the traffic demand of OD-pair k
- Example:
 - if OD-pair (a,c) is indexed with k, then $x_k = t_{ac}$

Contents

- Topology
- Traffic matrix
- Traffic engineering
- Load balancing

Traffic engineering and network design

- **Traffic engineering** = "Engineer the traffic to fit the topology"
 - Given a fixed topology and a traffic matrix, how to route these traffic demands?
- **Network design** = "Engineer the topology to fit the traffic"

Effect of routing on load distribution

- Routing algorithm determines how the traffic load is distributed to the links
 - Internet routing protocols (RIP, OSPF, BGP) apply the shortest path algorithms (Bellman-Ford, Dijkstra)
 - In MPLS networks, other algorithms are also possible
- More precisely: routing algorithm determines the proportions (**splitting ratios**) ϕ_{pk} of traffic demands x_k allocated to paths p,

$$\sum_{p \in P} \phi_{pk} = 1 \quad \text{for all } k$$

Link counts

Traffic on a path *p* between
 OD-pair *k* is thus

 $\phi_{pk} x_k$

• Link counts y_j are determined by traffic demands x_k and splitting ratios ϕ_{pk} :

$$y_j = \sum_{p \in P} \sum_{k \in K} a_{jp} \phi_{pk} x_k$$

• The same in matrix form:

$$\mathbf{y} = \mathbf{A}\boldsymbol{\phi}\mathbf{x}$$

MPLS

- **MPLS** (Multiprotocol Label Switching) supports traffic load distribution to parallel paths between OD-pairs
 - In MPLS networks, there can be any number of parallel Label Switched Paths (LSP) between OD-pairs
 - These paths do not need to belong to the set of shortest paths
 - Each LSP is associated with a label and each MPLS packet is tagged with such a label
- MPLS packets are routed through the network via these LSP's (according to their label)
- Traffic load distribution can be affected **directly** by changing the splitting ratios ϕ_{pk} at the origin nodes

OSPF (1)

- **OSPF** (Open Shortest Path First) is an intradomain routing protocol in IP networks
- Link State Protocol
 - each node tells the other nodes the distance to its neighbouring nodes
 - these distances are the link weights for the shortest path algorithm
 - based on this information, each node is aware of the whole topology of the domain
 - the shortest paths are derived from this topology using Dijkstra's algorithm
- IP packets are routed through the network via these shortest paths

OSPF (2)

- Routers in OSPF networks typically apply **ECMP** (Equal Cost Multipath)
 - If there are multiple shortest paths from node *n* to node *m*, then node *n* tries to split the traffic uniformly to those outgoing links that belong to at least one of these shortest paths
 - However, this does **not** imply that the traffic load is distributed uniformly to all shortest paths! See the example on next slide.
- Traffic load distribution can be affected only **indirectly** by changing the link weights
 - splitting ratios ϕ_{pk} can not directly be changed
 - due to ECMP, the desired splitting ratios ϕ_{pk} may be out of reach

Effect of link weights on load distribution (1)

Effect of link weights on load distribution (2)

Contents

- Topology
- Traffic matrix
- Traffic engineering
- Load balancing

Load balancing problem (1)

- Given a fixed topology and a traffic matrix, how to **optimally route** these traffic demands?
- One approach is to equalize the relative load of different links,
 - $\rho_j = y_j / c_j$
 - Sometimes this can be done in multiple ways (upper figure)
 - Sometimes it is not possible at all (lower figure)
 - In this case, we may, however, try to get as close as possible, e.g. by minimizing the maximum relative link load (called: load balancing problem)

Load balancing problem (2)

Load Balancing Problem:

- Consider a network with topology (*N*,*J*), link capacities c_j , and traffic demands x_k . Determine the splitting ratios ϕ_{pk} so that the maximum relative link load is minimized

Minimize
$$\max_{j \in J} \frac{y_j}{c_j}$$
subject to $\begin{cases} y_j = \sum_{p \in P} \sum_{k \in K} A_{jp} \phi_{pk} x_k & \forall j \in J \\ \sum_{p \in P} \phi_{pk} = 1 & \forall k \in K \end{cases}$ $\forall p \in P, k \in K$ $\phi_{pk} \ge 0$ $\forall p \in P, k \in K$

Load balancing problem (3)

- Load Balancing Problem has always a solution but this might not be unique
- Example:
 - the same maximum link load is achieved with routes of different length
 - the upper routes are better due to smaller capacity consumption
- A reasonable unique solution is achieved by associating a negligible cost with all the hops along the paths used

Load balancing problem (4)

- Load Balancing Problem with a reasonable and unique solution:
 - Consider a network with topology (*N*,*J*), link capacities c_j , and traffic demands x_k . Determine the splitting ratios ϕ_{pk} so that the maximum relative link load is minimized with the smallest amount of required capacity

Minimize
$$\max_{j \in J} \frac{y_j}{c_j} + \varepsilon \sum_{j \in J} y_j$$
subject to
$$\begin{cases} y_j = \sum_{p \in P} \sum_{k \in K} A_{jp} \phi_{pk} x_k & \forall j \in J \\ p \in P k \in K \end{cases}$$
$$\begin{cases} \sum_{p \in P} \phi_{pk} = 1 & \forall k \in K \\ \phi_{pk} \ge 0 & \forall p \in P, k \in K \end{cases}$$

Example (1): optimal solution

Example (3): optimal link weights

12. Traffic engineering

