

11. Simulation

Contents

- Introduction
- Generation of traffic process realizations
- Generation of random variable realizations
- Collection of data
- Statistical analysis

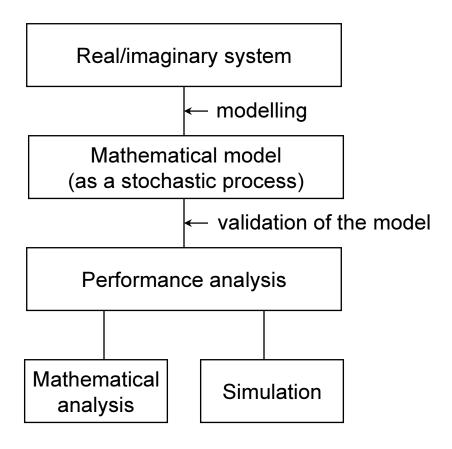
What is simulation?

- **Simulation** is (at least from the teletraffic point of view) a statistical method to estimate the performance (or some other important characteristic) of the system under consideration.
- It typically consists of the following four phases:
 - Modelling of the system (real or imaginary) as a dynamic stochastic process
 - Generation of the realizations of this stochastic process ("observations")
 - Such realizations are called simulation runs
 - Collection of data ("measurements")
 - Statistical analysis of the gathered data, and drawing conclusions

Alternative to what?

- In previous lectures, we have looked at an alternative way to determine the performance: **mathematical analysis**
- We considered the following two phases:
 - Modelling of the system as a stochastic process.
 (In this course, we have restricted ourselves to birth-death processes.)
 - Solving of the model by means of mathematical analysis
- The modelling phase is common to both of them
- However, the accuracy (faithfulness) of the model that these methods allow can be very different
 - unlike simulation, mathematical analysis typically requires (heavily) restrictive assumptions to be made

Performance analysis of a teletraffic system



Analysis vs. simulation (1)

- Pros of analysis
 - Results produced rapidly (after the analysis is made)
 - Exact (accurate) results (for the model)
 - Gives insight
 - Optimization possible (but typically hard)
- Cons of analysis
 - Requires restrictive assumptions
 - ⇒ the resulting model is typically too simple (e.g. only stationary behavior)
 - ⇒ performance analysis of complicated systems impossible
 - Even under these assumptions, the analysis itself may be (extremely) hard

Analysis vs. simulation (2)

- Pros of simulation
 - No restrictive assumptions needed (in principle)
 - ⇒ performance analysis of complicated systems possible
 - Modelling straightforward
- Cons of simulation
 - Production of results time-consuming (simulation programs being typically processor intensive)
 - Results inaccurate (however, they can be made as accurate as required by increasing the number of simulation runs, but this takes even more time)
 - Does not necessarily offer a general insight
 - Optimization possible only between very few alternatives (parameter combinations or controls)

Steps in simulating a stochastic process

- Modelling of the system as a stochastic process
 - This has already been discussed in this course.
 - In the sequel, we will take the model (that is: the stochastic process) for granted.
 - In addition, we will restrict ourselves to simple teletraffic models.
- Generation of the realizations of this stochastic process
 - Generation of random numbers
 - Construction of the realization of the process from event to event (discrete event simulation)
 - Often this step is understood as THE simulation, however this is not generally the case
- Collection of data
 - Transient phase vs. steady state (stationarity, equilibrium)
- Statistical analysis and conclusions
 - Point estimators
 - Confidence intervals

Implementation

- Simulation is typically implemented as a computer program
- Simulation program generally comprises the following phases (excluding modelling and conclusions)
 - Generation of the realizations of the stochastic process
 - Collection of data
 - Statistical analysis of the gathered data
- Simulation program can be implemented by
 - a general-purpose programming language
 - e.g. C or C++
 - most flexible, but tedious and prone to programming errors
 - utilizing simulation-specific program libraries
 - e.g. CNCL
 - utilizing simulation-specific software
 - e.g. OPNET, BONeS, NS (in part based on p-libraries)
 - most rapid and reliable (depending on the s/w), but rigid

Other simulation types

- What we have described above, is a discrete event simulation
 - the simulation is **discrete** (event-based), **dynamic** (evolving in time) and stochastic (including random components)
 - i.e. how to simulate the time evolvement of the mathematical model of the system under consideration, when the aim is to gather information on the system behavior
 - We consider only this type of simulation in this lecture
- Other types:
 - continuous simulation: state and parameter spaces of the process are continuous; description of the system typically by differential equations, e.g. simulation of the trajectory of an aircraft
 - static simulation: time plays no role as there is no process that produces the events, e.g. numerical integration of a multi-dimensional integral by Monte Carlo method
 - deterministic simulation: no random components, e.g. the first example above

Contents

- Introduction
- Generation of traffic process realizations
- Generation of random variable realizations
- Collection of data
- Statistical analysis

Generation of traffic process realizations

- Assume that we have modelled as a stochastic process the evolution of the system
- Next step is to generate realizations of this process.
 - For this, we have to:
 - Generate a realization (value) for all the random variables affecting the evolution of the process (taking properly into account all the (statistical) dependencies between these variables)
 - Construct a realization of the process (using the generated values)
 - These two parts are overlapping, they are not dome separately
 - Realizations for random variables are generated by utilizing (pseudo) random number generators
 - The realization of the process is constructed from event to event (discrete event simulation)

Discrete event simulation (1)

- Idea: simulation evolves from event to event
 - If nothing happens during an interval, we can just skip it!
- basic events modify (somehow) the state of the system
 - e.g. arrivals and departures of customers in a simple teletraffic model
- extra events related to the data collection
 - including the event for stopping the simulation run or collecting data
- Event identification:
 - occurrence time (when event is handled) and
 - event type (what and how event is handled)

Discrete event simulation (2)

- Events are organized as an event list
 - Events in this list are ordered (ascendingly) by the occurrence time
 - first: the event occurring next
 - Events are handled one-by-one (in this order) while at the same time generating new events to occur later
 - When the event has been processed, it is removed from the list
- Simulation clock tells the occurrence time of the next event
 - progressing by jumps
- System state tells the current state of the system

Discrete event simulation (3)

- General algorithm for a single simulation run:
 - 1 Initialization
 - simulation clock = 0
 - system state = given initial value
 - for each event type, generate next event (whenever possible)
 - construct the event list from these events
 - 2 Event handling
 - simulation clock = occurrence time of the next event
 - · handle the event including
 - generation of new events and their addition to the event list
 - updating of the system state
 - delete the event from the event list
 - 3 Stopping test
 - if positive, then stop the simulation run; otherwise return to 2

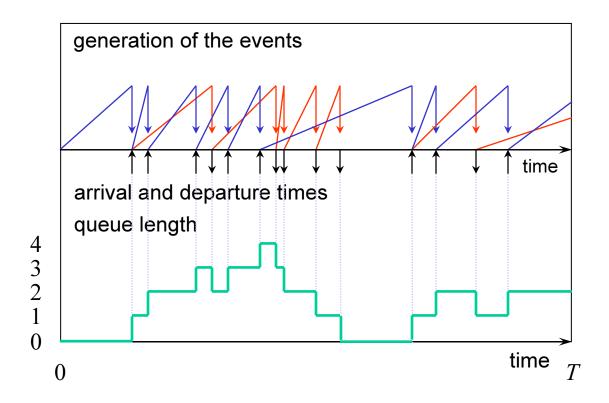
Example (1)

- **Task**: Simulate the M/M/1 queue (more precisely: the evolution of the queue length process) from time 0 to time *T* assuming that the queue is empty at time 0 and omitting any data collection
 - System state (at time t) = queue length X_t
 - initial value: $X_0 = 0$
 - Basic events:
 - customer arrivals
 - customer departures
 - Extra event:
 - stopping of the simulation run at time T
 - Note. No collection of data in this example

Example (2)

- Initialization:
 - initialize the system state: $X_0 = 0$
 - generate the time till the first arrival from the $Exp(\lambda)$ distribution
- Handling of an arrival event (occurring at some time t):
 - update the system state: $X_t = X_t + 1$
 - if $X_t = 1$, then generate the time (t + S) till the next departure, where S is from the $\text{Exp}(\mu)$ distribution
 - generate the time (t + I) till the next arrival, where I is from the $\text{Exp}(\lambda)$ distribution
- Handling of a departure event (occurring at some time t):
 - update the system state: $X_t = X_t 1$
 - if $X_t > 0$, then generate the time (t + S) till the next departure, where S is from the $\text{Exp}(\mu)$ distribution
- Stopping test: t > T

Example (3)



Contents

- Introduction
- Generation of traffic process realizations
- Generation of random variable realizations
- Collection of data
- Statistical analysis

Generation of random variable realizations

- Based on (pseudo) random number generators
- First step:
 - generation of independent uniformly distributed between 0 and 1, i.e. U(0,1) distributed, random variables using random number generators
- Step from the U(0,1) distribution to the desired distribution:
 - rescaling $(\Rightarrow U(a,b))$
 - **discretization** (\Rightarrow Bernoulli(p), Bin(n,p), Poisson(a), Geom(p))
 - inverse transform $(\Rightarrow \text{Exp}(\lambda))$
 - other transforms $(\Rightarrow N(0,1) \Rightarrow N(\mu,\sigma^2))$
 - acceptance-rejection method (for any continuous random variable defined in a finite interval whose density function is bounded)
 - two independent U(0,1) distributed random variables needed

Random number generator

- Random number generator is an algorithm generating (pseudo) random integers Z_i in some interval 0,1,...,m-1
 - The sequence generated is always periodic (goal: this period should be as long as possible)
 - Strictly speaking, the numbers generated are not random at all, but totally predictable (thus: pseudo)
 - In practice, however, if the generator is well designed, the numbers "appear" to be IID with uniform distribution inside the set $\{0,1,...,m-1\}$
- Validition of a random number generator can be based on empirical (statistical) and theoretical tests:
 - uniformity of the generated empirical distribution
 - independence of the generated random numbers (no correlation)

Random number generator types

Linear congruential generator

- most simple
- next random number is based on just the current one: $Z_{i+1} = f(Z_i)$ \Rightarrow period at most m

Multiplicative congruential generator

- a special case of the first type
- Other:
 - Additive congruential generators
 - Shuffling, etc.

Linear congruential generator (LCG)

• Linear congruential generator (LCG) uses the following algorithm to generate random numbers belonging to $\{0,1,...,m-1\}$:

$$Z_{i+1} = (aZ_i + c) \bmod m$$

- Here a, c and m are fixed non-negative integers (a < m, c < m)
- In addition, the starting value (seed) $Z_0 < m$ should be specified
- Remarks:
 - Parameters a, c and m should be chosen with care,
 otherwise the result can be very poor
 - By a right choice of parameters,
 it is possible to achieve the full period m
 - e.g. $m = 2^b$, c odd, a = 4k + 1 (b often 48)

Multiplicative congruential generator (MCG)

• Multiplicative congruential generator (MCG) uses the following algorithm to generate random numbers belonging to $\{0,1,...,m-1\}$:

$$Z_{i+1} = (aZ_i) \bmod m$$

- Here a and m are fixed non-negative integers (a < m)
- In addition, the starting value (seed) Z₀ < m should be specified
- Remarks:
 - MCG is clearly a special case of LCG: c = 0
 - Parameters a and m should (still) be chosen with care
 - In this case, it is not possible to achieve the full period m
 - e.g. if $m = 2^b$, then the maximum period is 2^{b-2}
 - However, for m **prime**, period m-1 is possible (by a proper choice of a)
 - PMMLCG = prime modulus multiplicative LCG
 - e.g. $m = 2^{31} 1$ and a = 16,807 (or 630,360,016)

11. Simulation

U(0,1) distribution

- Let Z denote a (pseudo) random number belonging to $\{0,1,...,m-1\}$
- Then (approximately)

$$U = \frac{Z}{m} \approx \text{U(0,1)}$$

11. Simulation

U(a,b) distribution

- Let $U \sim U(0,1)$
- Then

$$X = a + (b - a)U \sim U(a, b)$$

This is called the **rescaling** method

Discretization method

- Let $U \sim U(0,1)$
- Assume that Y is a discrete random variable
 - with value set $S = \{0,1,...,n\}$ or $S = \{0,1,2,...\}$
- Denote: $F(x) = P\{Y \le x\}$, then

$$X = \min\{x \in S \mid F(x) \ge U\} \sim Y$$

- This is called the discretization method
 - a special case of the inverse transform method
- **Example**: Bernoulli(p) distribution

$$X = \begin{cases} 0, & \text{if } U \le 1 - p \\ 1, & \text{if } U > 1 - p \end{cases} \sim \text{Bernoulli}(p)$$

Inverse transform method

- Let $U \sim U(0,1)$
- Assume that Y is a continuous random variable
- Assume further that $F(x) = P\{Y \le x\}$ is strictly increasing
- Let $F^{-1}(y)$ denote the inverse of the function F(x), then

$$X = F^{-1}(U) \sim Y$$

- This is called the inverse transform method
- Proof: Since $P\{U \le u\} = u$ for all $u \in (0,1)$, we have

$$P\{X \le x\} = P\{F^{-1}(U) \le x\} = P\{U \le F(x)\} = F(x)$$

11. Simulation

$Exp(\lambda)$ distribution

- Let $U \sim U(0,1)$
 - Then also $1-U \sim \mathrm{U}(0,1)$
- Let $Y \sim \operatorname{Exp}(\lambda)$
 - $F(x) = P\{Y \le x\} = 1 e^{-\lambda x}$ is strictly increasing
 - The inverse transform is $F^{-1}(y) = -(1/\lambda) \log(1-y)$
- Thus, by the inverse transform method,

$$X = F^{-1}(1 - U) = -\frac{1}{\lambda}\log(U) \sim \operatorname{Exp}(\lambda)$$

N(0,1) distribution

- Let $U_1 \sim \mathrm{U}(0,1)$ and $U_2 \sim \mathrm{U}(0,1)$ be independent
- Then, by so called Box-Müller method, the following two (transformed) random variables are **independent** and identically distributed obeying the N(0,1) distribution:

$$X_1 = \sqrt{-2\log(U_1)}\sin(2\pi U_2) \sim N(0,1)$$

$$X_2 = \sqrt{-2\log(U_1)}\cos(2\pi U_2) \sim N(0,1)$$

11. Simulation

$N(\mu,\sigma^2)$ distribution

- Let $X \sim N(0,1)$
- Then, by the rescaling method,

$$Y = \mu + \sigma X \sim N(\mu, \sigma^2)$$

Contents

- Introduction
- Generation of traffic process realizations
- Generation of random variable realizations
- Collection of data
- Statistical analysis

Collection of data

- Our starting point was that simulation is needed to estimate the value, say α , of some performance parameter
 - This parameter may be related to the **transient** or the **steady-state** behaviour of the system.
 - Examples 1 & 2 (transient phase characteristics)
 - average waiting time of the first k customers in an M/M/1 queue assuming that the system is empty in the beginning
 - average queue length in an M/M/1 queue during the interval [0,T] assuming that the system is empty in the beginning
 - Example 3 (steady-state characteristics)
 - the average waiting time in an M/M/1 queue in equilibrium
- Each simulation run yields one sample, say X, describing somehow the parameter under consideration
- For drawing statistically reliable conclusions, multiple samples, $X_1, ..., X_n$, are needed (preferably IID)

Transient phase characteristics (1)

- Example 1:
 - Consider e.g. the average waiting time of the first k customers in an M/M/1 queue assuming that the system is empty in the beginning
 - Each simulation run can be stopped when the kth customer enters the service
 - The sample *X* based on a single simulation run is in this case:

$$X = \frac{1}{k} \sum_{i=1}^{k} W_i$$

- Here W_i = waiting time of the *i*th customer in this simulation run
- Multiple IID samples, $X_1, ..., X_n$, can be generated by the method of **independent replications**:
 - multiple independent simulation runs (using independent random numbers)

Transient phase characteristics (2)

- Example 2:
 - Consider e.g. the average queue length in an M/M/1 queue during the interval [0,T] assuming that the system is empty in the beginning
 - Each simulation run can be stopped at time T (that is: simulation clock = T)
 - The sample *X* based on a single simulation run is in this case:

$$X = \frac{1}{T} \int_{0}^{T} Q(t)dt$$

- Here Q(t) = queue length at time t in this simulation run
- Note that this integral is easy to calculate, since Q(t) is piecewise constant
- Multiple IID samples, $X_1, ..., X_n$, can again be generated by the method of independent replications

Steady-state characteristics (1)

- Collection of data in a single simulation run is in principle similar to that of transient phase simulations
- Collection of data in a single simulation run can typically (but not always) be done only after a warm-up phase (hiding the transient characteristics) resulting in
 - overhead ="extra simulation"
 - bias in estimation
 - need for determination of a sufficiently long warm-up phase
- Multiple samples, $X_1, ..., X_n$, may be generated by the following three methods:
 - independent replications
 - batch means

Steady-state characteristics (2)

Method of independent replications:

- multiple independent simulation runs of the same system (using independent random numbers)
- each simulation run includes the warm-up phase ⇒ inefficiency
- samples IID ⇒ accuracy

Method of batch means:

- one (very) long simulation run divided (artificially) into one warm-up phase and n equal length periods (each of which represents a single simulation run)
- only one warm-up phase ⇒ efficiency
- samples only approximately IID ⇒ inaccuracy,
 - choice of *n*, the larger the better

Contents

- Introduction
- Generation of traffic process realizations
- · Generation of random variable realizations
- Collection of data
- Statistical analysis

Parameter estimation

- As mentioned, our starting point was that simulation is needed to estimate the value, say α , of some performance parameter
- Each simulation run yields a (random) sample, say X_i , describing somehow the parameter under consideration
 - Sample X_i is called **unbiased** if $E[X_i] = \alpha$
- Assuming that the samples X_i are IID with mean lpha and variance σ^2
 - Then the sample average

$$\overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i$$

- is **unbiased** and **consistent** estimator of α , since

$$E[\bar{X}_n] = \frac{1}{n} \sum_{i=1}^n E[X_i] = \alpha$$

$$D^2[\bar{X}_n] = \frac{1}{n^2} \sum_{i=1}^n D^2[X_i] = \frac{1}{n} \sigma^2 \to 0 \quad (\text{as } n \to \infty)$$
39

Example

- Consider the average waiting time of the first 25 customers in an M/M/1 queue with load $\rho=0.9$ assuming that the system is empty in the beginning
 - Theoretical value: $\alpha = 2.12$ (non-trivial)
 - Samples X_i from ten simulation runs (n = 10):
 - 1.05, 6.44, 2.65, 0.80, 1.51, 0.55, 2.28, 2.82, 0.41, 1.31
 - Sample average (point estimate for α):

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i = \frac{1}{10} (1.05 + 6.44 + \dots + 1.31) = 1.98$$

Confidence interval (1)

• **Definition**: Interval $(\overline{X}_n - y, \overline{X}_n + y)$ is called the **confidence interval** for the sample average at **confidence level** $1 - \beta$ if

$$P\{|\overline{X}_n - \alpha| \le y\} = 1 - \beta$$

- Idea: "with probability 1β , the parameter α belongs to this interval"
- Assume then that samples X_i , i=1,...,n, are IID with unknown mean α but **known** variance σ^2
- By the Central Limit Theorem (see Lecture 5, Slide 48), for large *n*,

$$Z := \frac{\overline{X}_n - \alpha}{\sigma / \sqrt{n}} \approx N(0,1)$$

Confidence interval(2)

- Let z_p denote the p-fractile of the N(0,1) distribution
 - That is: $P\{Z \le z_p\} = p$, where $Z \sim N(0,1)$
 - Example: for $\beta = 5\%$ $(1 \beta = 95\%) \Rightarrow z_{1-(\beta/2)} = z_{0.975} \approx 1.96 \approx 2.0$
- **Proposition**: The confidence interval for the sample average at confidence level $1-\beta$ is

$$\overline{X}_n \pm z_{1-\frac{\beta}{2}} \cdot \frac{\sigma}{\sqrt{n}}$$

Proof: By definition, we have to show that

$$P\{|\overline{X}_n - \alpha| \le z_{1 - \frac{\beta}{2}} \cdot \frac{\sigma}{\sqrt{n}}\} = 1 - \beta$$

11. Simulation

$$P\{|\overline{X}_{n} - \alpha| \leq y\} = 1 - \beta$$

$$\Leftrightarrow P\{\frac{|\overline{X}_{n} - \alpha|}{\sigma/\sqrt{n}} \leq \frac{y}{\sigma/\sqrt{n}}\} = 1 - \beta$$

$$\Leftrightarrow P\{\frac{-y}{\sigma/\sqrt{n}} \leq \frac{\overline{X}_{n} - \alpha}{\sigma/\sqrt{n}} \leq \frac{y}{\sigma/\sqrt{n}}\} = 1 - \beta$$

$$\Leftrightarrow \Phi(\frac{y}{\sigma/\sqrt{n}}) - \Phi(\frac{-y}{\sigma/\sqrt{n}}) = 1 - \beta \qquad [\Phi(x) := P\{Z \leq x\}]$$

$$\Leftrightarrow \Phi(\frac{y}{\sigma/\sqrt{n}}) - (1 - \Phi(\frac{y}{\sigma/\sqrt{n}})) = 1 - \beta \qquad [\Phi(-x) = 1 - \Phi(x)]$$

$$\Leftrightarrow \Phi(\frac{y}{\sigma/\sqrt{n}}) = 1 - \frac{\beta}{2}$$

$$\Leftrightarrow \frac{y}{\sigma/\sqrt{n}} = z_{1 - \frac{\beta}{2}}$$

$$\Leftrightarrow y = z_{1 - \frac{\beta}{2}} \cdot \frac{\sigma}{\sqrt{n}}$$

Confidence interval (3)

- In general, however, the variance σ^2 is unknown (in addition to the mean α)
- It can be estimated by the sample variance:

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} (\sum_{i=1}^n X_i^2 - n \overline{X}_n^2)$$

• It is possible to prove that the sample variance is an unbiased and consistent estimator of σ^2 :

$$E[S_n^2] = \sigma^2$$

$$D^2[S_n^2] \to 0 \quad (n \to \infty)$$

Confidence interval (4)

- Assume that samples X_i are IID obeying the $N(\alpha, \sigma^2)$ distribution with unknown mean α and **unknown** variance σ^2
- Then it is possible to show that

$$T := \frac{\overline{X}_n - \alpha}{S_n / \sqrt{n}} \sim \text{Student}(n-1)$$

- Let $t_{n-1,p}$ denote the *p*-fractile of the Student(n-1) distribution
 - That is: $P\{T \le t_{n-1,p}\} = p$, where $T \sim \text{Student}(n-1)$
 - Example 1: n = 10 and $\beta = 5\%$, $t_{n-1,1-(\beta/2)} = t_{9,0.975} \approx 2.26 \approx 2.3$
 - Example 2: n = 100 and $\beta = 5\%$, $t_{n-1,1-(\beta/2)} = t_{99,0.975} \approx 1.98 \approx 2.0$
- Thus, the conf. interval for the sample average at conf. level $1-\beta$ is

$$\overline{X}_n \pm t_{n-1,1-\frac{\beta}{2}} \cdot \frac{S_n}{\sqrt{n}}$$

Example (continued)

- Consider the average waiting time of the first 25 customers in an M/M/1 queue with load $\rho=0.9$ assuming that the system is empty in the beginning
 - Theoretical value: $\alpha = 2.12$
 - Samples X_i from ten simulation runs (n = 10):
 - 1.05, 6.44, 2.65, 0.80, 1.51, 0.55, 2.28, 2.82, 0.41, 1.31
 - Sample average = 1.98 and the square root of the sample variance:

$$S_n = \sqrt{\frac{1}{9}((1.05 - 1.98)^2 + ... + (1.31 - 1.98)^2)} = 1.78$$

– So, the confidence interval (that is: interval estimate for α) at confidence level 95% is

$$\overline{X}_n \pm t_{n-1,1-\frac{\beta}{2}} \cdot \frac{S_n}{\sqrt{n}} = 1.98 \pm 2.26 \cdot \frac{1.78}{\sqrt{10}} = 1.98 \pm 1.27 = (0.71,3.25)$$

Observations

- Simulation results become more accurate (that is: the interval estimate for α becomes narrower) when
 - the number *n* of simulation runs is increased, or
 - the variance σ^2 of each sample is reduced
 - by running longer individual simulataion runs
 - variance reduction methods
- Given the desired accuracy for the simulation results,
 the number of required simulation runs can be determined dynamically

Literature

- I. Mitrani (1982)
 - "Simulation techniques for discrete event systems"
 - Cambridge University Press, Cambridge
- A.M. Law and W. D. Kelton (1982, 1991)
 - "Simulation modeling and analysis"
 - McGraw-Hill, New York