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Teletraffic model of a circuit switched network (1)

Consider a circuit switched
network

— e.g. a telephone network O ?

Traffic:

— telephone calls

— each (carried) call occupies one
channel on each link among its

route

System:
— telephone machines (terminals)
— exchanges (network nodes)

— access links (from terminals to
exchanges)

— trunks (between exchanges)




Teletraffic model of a circuit switched network (2)

* Quality of service:
— described by the end-to-end

call blocking probability O i)
(prob. that a desired connection

cannot be set up due to
congestion along the route of
the connection)

* |n our model we assume that A

— the network nodes and the
whole access network are non-
blocking

 Thus, a call is blocked

— if and only if all channels are
occupied in any trunk network
link along the route of that call




10. Network models

Links j=1,...,J

* In our model,
— all links are two-way (why?)

« We index the links in the trunk
network by

- j=1,...J
— example on the right: J=06
* Let n; denote the number of A
channels in link j (that is: the link
capacity)
- n=(ny,...,ny)
« Each link is modelled as a
— pure loss system




Routesr=1,...,R

We define a route as a

— set of consecutive (two-way)
links connecting two network
nodes

We index the routes by
- r=1,..,R
In the example on the right: A

- R=12+10+7+3=32

— there are three routes
between nodes a and b:
{1,2}, {6,3}, {5,4,3}

Let a}r = 1 if link j belongs to
route » (otherwise dj,, =0)

~ D=(d,|j=1l.d;r=1,...R)



Traffic classes

Note:

— End-to-end call blocking prob. is
equal for all the connections
following the same route

Thus the traffic class of a
connection is determined by the
route r the connection follows

— Example on the right: connection
between A and B belongs to
class using route {6,3}

Let x,. denote the number of
active connections following
route r

- X=(xXp,...,.Xp)

Vector x is called the state of the
system




State space

The number of active connections x,. for any traffic class 7 is limited by
the link capacities n; along the corresponding route r :

R
2.dj.x.<n; forallj
r=l1

The same in vector form:
D-x<n

Thus, the state space S (that is: the set of admissible states) is
S={x>0|D-x<n}

— Note that, due to finite link capacities, set S is finite




Example

« 3 links with capacities:
— link a-c: 3 channels
— link b-c: 3 channels
— link c-d: 4 channels

o 2 routes:
— route a-c-d
— route b-c-d

— The other 4 routes (which?) are
ignored in this model

« State space:

- §={(0,0),(0,1),(0,2),(0,3),
(1,0),(1,1),(1,2),(1,3),
(2,0),(2,1),(2,2),
(3,0).(3,1)}




Set S, of non-blocking states for class r

Consider
— an arriving call belonging to class 7 (that is: following route r)

It will not be blocked by link j belonging to route r
— if there is at least one free channel on link ;:

R
2. djpxp<n;—1 forall jer
r'=1
The same in vector form (e, being here the unit vector in direction r):
D-(x+e,)<n

The set S, of non-blocking states for class r is thus

S ={x>0|D-(x+e,)<n}
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Set S.B of blocking states for class r

The set SFB of blocking states
for class r is clearly:

sB=5\s,

Summary:

— an arriving call of class 7 is
blocked (and lost)

if and only if the state x of the
system belongs to set S,,B

Example (continued):

— The blocking states S, for
connections of class 1
(using route a-c-d) are
circulated in the figure

- 85%={(1,3),22),(3,0),(3,1)}
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Loss network

 Assume that

— new connection requests belonging to traffic class r arrive (independently)
according to a Poisson process with intensity A,

— call holding times independently and identically distributed with mean /4
 Denote
— a, = A (traffic intensity for class r)




Equilibrium distribution (1)

Then it is possible to show that
— the stationary state probability m(x) for any state x € S'is as follows:

R
7(x)=G T £ (x,)

r=1

where G is a normalizing constant:

R
G = Z Hfr(xr)

xeSr=1

and the functions f (x,) are defined as follows:

fr(xr):

Xy
r
x,.!

a
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Equilibrium distribution (2)

» Probability mt(x) is said to be of product-form
— However, the number of active connections of different classes are not
independent (since the normalizing constant G depends on each x,)

— Only if all the links had infinite capacities,
all the traffic classes would be independent of each other

— Thus, it is the limited resources shared by the traffic classes
that makes them dependent on each other

14




PASTA

Consider, for a while,

— any simple teletraffic model with Poisson arrivals
According to so called PASTA (Poisson Arrivals See Time Averages)
property,

— arriving calls (obeying a Poisson process) see the system in equilibrium
This is an important observation

— applicable in many problems
For example,

— it allows us to calculate the end-to-end blocking probabilities in our circuit
switched network model (since we assumed that new calls arrive according
to a Poisson process)
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End-to-end blocking: exact formula

The probability that the system is in a state such that it cannot accept
any more connections of type r is clearly given by the sum

2. 77(X)

xeSf

— Call this the end-to-end time blocking probability for class r
Due to the PASTA property,
— the end-to-end call blocking probability B, equals this:

B, = > n(x)
xeSﬁ

Since there is no difference between time and call blocking in this case,
we may briefly call it end-to-end blocking.
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Example

Consider the example presented in slide 9 (and continued in slide 11)

The end-to-end blocking probability B, for class 1 will be
Bi=n(1,3)+7(2,2)+7(3,0)+7(3,]) =
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Approximative methods

* |In practice,
— itis extremely hard (even impossible) to apply the exact formula

— This is due to the so called state space explosion:
there are as many dimensions in the state spaces as
there are routes in our model
= exponential growth of the state space

« Thus, approximative methods are needed

— Below we will present (the simplest) one of them: product bound

*  Product Bound method

— estimate first blocking probabilities in each separate link
(common to all traffic classes)

— calculate then the end-to-end blocking probabilities for each class
based on the hypothesis that “blocking occurs independently in each link”
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Product Bound (1)

« Consider first the blocking probability B(j) in an arbitrary link ;
— Let R(j) denote the set of routes that use link j
 If the capacities of all the other links (but ;) were infinite,

— link j could be modelled as a loss system where new calls arrive according
to a Poisson process with intensity A(f),

A= 24
reR(j)
— In this case, the blocking probability could be calculated from formula

B(j)=Er(n;, > a,)
reR(j)

— Note that this is really an approximation, since the traffic offered to link j is
smaller due to blockings in other links (and not even of Poisson type).
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Product Bound (2)

« Consider then the end-to-end blocking probability B,. for class r
— Let J(r) denote the set of the links that belong to route r

— Note that an arriving call of class  will not be blocked,
if it is not blocked in any link j € J(7)

« If blocking occured independently in each link,
— an arriving call of class » would be blocked with probability

B, ~1-T1 ;e sy (1= B())

— Note that for small values of B(j)’s, we can use the following approximation:
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Teletraffic model of a packet switched network (1)

Consider a connectionless
packet switched network at
packet level

— e.g. an Internet subnetwork
Traffic:

— data packets

— identified by their source (A) and
destination (B)

System:

— workstations & servers
(terminals)

— routers (network nodes)

— access links
(from terminals to routers)

— trunks (between routers)

o I
===B

z==b
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Teletraffic model of a packet switched network (2)

Quality of service:

— described by the average end-
to-end packet delay (the mean ?
time for a packet to get from the
source (A) to the destination (B))

However, in our model

— we restrict ourselves to the
average trunk network delay A =Blg 2
(the mean time for a packet to /
get from the source router (a) to
the destination router (b))

— implicitly, we assume that the
delay due to access network is
negligible (or, at least, almost
deterministic)

==8 (p
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End-to-end delay components

« Trunk network delay consists of

— propagation delays (in links)

— transmission delays (in links)

— processing delays (in nodes)

— queueing delays (before transmission and before processing)
* Note that

— propagation and transmission delays are deterministic,

— processing delays might be random, and

— queueing delays are surely random

* |n our model,

— we will take into account the transmission and the related queueing delays

— but we will ignore the propagation delays in links and the delays in nodes
(the processing and the related queueing delays)
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Links j=1,...,J

In this case we separate the
directions so that
— all links are one-way (why?)

We index the links in the trunk
network by

— example on the right: J =12

Let CJ denote the capacity of
link j (in bps)

A - ==Blg

’B
12
10

3g==B

11

8
7
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Routesr=1,...,R

» \We define here a route as an

— ordered set of consecutive (one-
way) links connecting two
network nodes (called origin and
destination)

« We index the routes by 1
- r=1,....R

* In the example on the right:
— R=2%(12+10+74+3) = 64
— there are three routes

from node a to node b:
(1,3), (11,6), (10,8,6)
— for these routes,

node a is the origin and
node b is the destination

8
7
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Individual link model

« Each link is modelled as a

— pure waiting system (with a single server and an infinite buffer)
 Let

- kj = arrival rate of packets to be transmitted on link j (in packets/s)

— L = mean packet length (in bits)

- l/uj = L/Cj = average packet transmission time on link j (in seconds)

« Stability requirement: kj <1

C/L

Y
Y
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Packet arrival rates in links

 Let
— A(r) = arrival rate of packets following route r

— R(j) = the set of routes that use link j
» can be deduced from the routing tables

« It follows that the arrival rate for link j is as follows:

Ai= TAM)

rer(j)
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Traffic classes

Note:

— Average end-to-end delay is

equal for all the packets

following the same route

Thus,

— the traffic class of a packet is

determined by the route
the connection follows

r that
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State space

Let X; = denote the number of packets in queue j (including the packet

being transmitted (if any))
- X=(xXp,..., X))
Vector x is called the state of the system

— A more detailed state description (including the position and traffic class of
each packet in the whole system) is not needed under the assumptions that

we will make later!

In this case, X; can have any non-negative value

Thus, the state space S is
S={x>0)

— Note that, set S is now infinite
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10. Network models

Example
o 2links:
— link a-b , 5
— link b-c a| 10— b | 1II0O—|c
e 3 routes:
— route a-b
— route b-c A
4 e o o o
— route a-b-c
3 e o o o
« State space: /./‘ S
x22 o (o] o
- §={(0,0), 1 o,
(1,0),(0,1), ”6”
(210)1(111)1(0,2)1 (’l .f. ° .>
(3,0),(2,1),(1,2)(0.3), 0172 3 4
-} 5200/ ®
llx;'z 2 ’\l
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Queueing network

« Assume that

— new packets following route r arrive (independently)
according to a Poisson process with intensity A(7)

— packet lengths are independently and exponentially distributed
with mean L

* |t follows that

— new packets to be transmitted on link ;j arrive (independently)
according to a Poisson process with intensity kj, where

Ai= 2 Ar)
reR(J)

— packet transmission times are independently and exponentially distributed
with mean 1/p; = L/C;
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Equilibrium distribution (1)

 Assume further that

— the system is stable: A; < i, for all /

— packet length is independently redrawn (from the same distribution)
every time the packet moves from one link to another

* This is so called Kleinrock’s independence assumption
« Under these assumptions, it is possible to show that
— the stationary state probability m(x) for any state x € S'is as follows:

J
7Z'(X) — H(l_pj)pjxj
=1

]:
— Where p; denotes the traffic load of link ;:
A AL
/0] = J =" <1
Hjo €
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Equilibrium distribution (2)

« Probability m(x) is again said to be of product-form
— Now, the number of packets in different queues are independent (why?)

« Each individual queue j behaves as an M/M/1 queue
— Number of packets in queue j follows a geometric distribution with mean

X;= PJ
1-p;
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Mean end-to-end delay

Consider then the mean end-to-end delay for class r
— Let J(r) denote the set of the links that belong to route r

In our model, the mean end-to-end delay will be

— the sum of mean delays experienced in the links along the route
(including both the transmission delay and the queueing delay)

By Little’s formula, the mean link delay is

X, 1 p; 11 1

J — — = . — = — .
Aj Ap=pj sy 1=py B4
Thus, the mean end-to-end delay for class 7 is

T(r= Y T,= Y L= ¥ L=

gedty | eI SR B
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10. Network models

THE END
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