9. Sharing systems

Contents

» Refresher: Simple teletraffic model

* M/M/1-PS (e customers, 1 server, c customer places)

*  M/M/n-PS (e customers, n servers, co customer places)
» Application to flow level modelling of elastic data traffic
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Simple teletraffic model

Customers arrive at rate A (customers per time unit)
— 1/A = average inter-arrival time
Customers are served by » parallel servers
When busy, a server serves at rate p (customers per time unit)
— 1/u = average service time of a customer
There are n + m customer places in the system
— at least n service places and at most m waiting places
It is assumed that blocked customers (arriving in a full system) are lost

Pure sharing system
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« Finite number of servers (n < ), infinite number of service places
(n + m = ), no waiting places
— If there are at most n customers in the system (x < ), each customer has
its own server. Otherwise (x > n), the total service rate (np) is shared fairly
among all customers.
— Thus, the rate at which a customer is served equals min{p,np/x}
— No customers are lost, and no one needs to wait before the service.

— But the delay is the greater, the more there are customers in the system.
Thus, delay is an interesing measure from the customer’s point of view.
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Contents M/M/1-PS queue

Refresher: Simple teletraffic model + Consider the following simple teletraffic model:

M/M/1-PS (o0 customers, 1 server, o customer places) — Infinite number of independent customers (k = ©)

M/M/n-PS (oo customers, n servers, oo customer places) — Interarrival times are 11D and exponentially distributed with mean 1/A
Application to flow level modelling of elastic data traffic * so, customers arrive according to a Poisson process with intensity A

M/M/1/klk-PS (k customers, 1 server, k customer places) ~ One server (n=1)
— Service requirements are IID and exponentially distributed with mean 1/p

— Infinite number of customer places (p = o)
— Queueing discipline: PS. All customers are served simultaneously in a fair
way with equal shares of the service capacity L.

+ Using Kendall’s notation, this is an M/M/1-PS queue
* Notation:
- p= A/ = traffic load

State transition diagram Equilibrium distribution (1)
Let X(#) denote the number of customers in the system at time ¢ * Local balance equations (LBE):
— Assume that X(#) = i at some time ¢, and
A =T 1 (LBE)

consider what happens during a short time interval (¢, +h]:
- with prob. Az + o(h), _ A _
P () . , = vl =7 = P7T;
a new customer arrives (state transition i — i+1) M
« if i > 0, then, with prob. i(Wi)h + o(h) = ph + o(h),
a customer leaves the system (state transition i — i—1)

Process X(¢) is clearly a Markov process with state transition diagram
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* Normalizing condition (N):
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Note that this is the same irreducible birth-death process with an infinite -1
state space S'= {0,1,2,...} as for the M/M/1-FIFO queue. D 5 1 .
p { } q = mo=| D p' =(1_1p)> =1-p, if p<1
i=0




Equilibrium distribution (2)

Mean delay

Thus, for a stable system (p < 1), the equilibrium distribution exists
and is a geometric distribution:

p<l = X ~Geom(p)
PX=iy=m;=(1-p)p’, i=012,...

E[X]={Z, D’[X]=—*
(1-p)
Remark: Insensitivity with respect to service time distribution
— The result for the PS discipline is insensitive to the service time
distribution, that is: it is valid for any service time distribution with mean 1/p

— So, instead of the M/M/1-PS model, we can consider, as well, the more
general M/G/1-PS model

Let D denote the total time (delay) in the system of a (typical) customer
Since the mean number of customers in the system, E[X], is the same
for all work-conserving queueing disciplines, also the mean delay is the
same, by Little’s result.

Thus, we may apply the result derived for the FIFO discipline in Lect. 8:
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Mean delay E[D] vs. traffic load p

Relative throughput

— Note that the time unit is the average service requirement E[S]
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A quality of service measure is the relative throughput E[S]/E[D]:
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Relative throughput E[S]/E[D] vs. traffic load p
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» Refresher: Simple teletraffic model

M/M/1-PS (e customers, 1 server, o customer places)

e M/M/n-PS (e customers, n servers, c customer places)
» Application to flow level modelling of elastic data traffic
M/M/1/klk-PS (k customers, 1 server, k customer places)

M/M/n-PS queue

State transition diagram

» Consider the following simple teletraffic model:
— Infinite number of independent customers (k = )

Interarrival times are 11D and exponentially distributed with mean 1/A

« so, customers arrive according to a Poisson process with intensity A
— Finite number of servers (n < )
— Service requirements are IID and exponentially distributed with mean 1/p
— Infinite number of customer places (p = o)

— Queueing discipline: PS. If there are at most n customers in the system
(i £ n), each customer has its own server. Otherwise (i > n), the total
service rate (npL) is shared fairly among all customers.

» Using Kendall’s notation, this is an M/M/n-PS queue
* Notation:
-  p=A(np) = traffic load

* Let X(#) denote the number of customers in the system at time ¢

— Assume that X(#) = i at some time ¢, and
consider what happens during a short time interval (¢, #+h]:
« with prob. A + o(h),
a new customer arrives (state transition i — i+1)
« if i > 0, then, with prob. imin{p,nu/i}-h + o(h) = min{i,n}-uh + o(h),
a customer leaves the system (state transition i — i—1)

* Process X(7) is clearly a Markov process with state transition diagram
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* Note that this is the same irreducible birth-death process with an infinite

state space S = {0,1,2,...} as for the M/M/n-FIFO queue.




Equilibrium distribution (1)

Equilibrium distribution (2)

Local balance equations (LBE) for i < n:
mA=min i+ u (LBE)
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Local balance equations (LBE) for i > n:
A =T \nu (LBE)
_ A _
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Normalizing condition (N):
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Equilibrium distribution (3)

Mean delay

Thus, for a stable system (p < 1, that is: A < np), the equilibrium
distribution exists and is as follows:

p<l =
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Remark: Insensitivity with respect to service time distribution
— The result for the PS discipline is insensitive to the service time
distribution, that is: it is valid for any service time distribution with mean 1/p

— So, instead of the M/M/n-PS model, we can consider, as well, the more
general M/G/n-PS model

o0 o0
pw =P{X*>n}= 3 nm =

Let D denote the total time (delay) in the system of a (typical) customer

Since the mean number of customers in the system, E[X], is the same
for all work-conserving queueing disciplines, also the mean delay is the
same, by Little’s result.

Thus, we may apply the result derived for the FIFO discipline in Lect. 8:
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— where p,, refers to the probability
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Mean delay E[D] vs. traffic load p

— Note that the time unit is the average service requirement E[S]
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Relative throughput

« A quality of service measure is the relative throughput E[S]/E[D]:
E[S] _ n(1-p) n(1-p)
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Relative throughput E[S]/E|[D] vs. traffic load p
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Application to flow level modelling of elastic data traffic

*  M/G/n-PS model is applicable to flow level modelling of elastic data

Throughput 6 vs. traffic load p

— Note that the rate unit is the link rate C

traffic I
— customer = TCP flow \ r=C
— A = flow arrival rate (flows per time unit) 0.8 “
— r=access link speed for a flow (data units per time unit) 0.6 )
— C = nr = speed of the shared link (data units per time unit) throughput 0 — ’(:3;
— E[L] = average flow size (data units) 0.4 r=2cr3 T
— E[S] = 1/n= E[L)/r = average flow transfer time with access link rate 0.2 B
- p = M(np) = traffic load : ( 0]
* A quality of service measure is the throughput o.’é < ]()3.4 06 0.3 1
g=EIL] _rES]_ _ rad-p) _ -~ (-p) traffic load p
E[D]  E[D]  pw(n)+n(l-p) pw (n)+n(l-p)
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Contents M/M/1/k/k-PS queue
» Refresher: Simple teletraffic model » Consider the following simple teletraffic model:
*  M/M/1-PS (o customers, 1 server, c customer places) — Finite number of independent customers (k < )
« M/M/n-PS (o customers, 1 servers, o customer places) » on-off type customers (alternating between idleness and activity)
« Application to flow level modelling of elastic data traffic — Idle times are |ID and exponentially distributed with mean 1/v
e« M/M/1/klk-PS (k customers, 1 server, k customer places) ~ Oneserver (n=1)
— Service requirements are IID and exponentially distributed with mean 1/p
— As many customer places as customers (p = k)
— Queueing discipline: PS.
» Using Kendall’s notation, this is an M/M/1/k/k-PS queue
*  On-off type customer:
| service
0 idleness I_I
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State transition diagram

Let X(#) denote the number of customers in the system at time ¢
— Assume that X(#) = i at some time ¢, and
consider what happens during a short time interval (¢, +h]:
« if i <k, then, with prob. (k—i)vh + o(h),
an idle customer becomes active (state transition i — i+1)
+ if i > 0, then, with prob. i(W/i)h + o(h) = 1 + o(h),
an active customer becomes idle (state transition i — i—1)

Process X(¢) is clearly a Markov process with state transition diagram

Equilibrium distribution (1)
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Note that process X(¢) is an irreducible birth-death process
with a finite state space S = {0,1,...,k}
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Local balance equations (LBE):
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Equilibrium distribution (2)

Normalizing condition (N):

(kli)!(g)k—i =1 (N)

1
1 k=i | 1
(k—i)!(i) l] - k1 ;

>1&)
i=0

k k
WWIET D
i=0 i=0

k
= T :(;

0

1 HNk=i
_(k—i)!(?) :

SR WY LAY A
= 7 =7 i) .
23
l=0 31




