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Simple teletraffic model

Customers arrive at rate A (customers per time unit)
— 1/\ = average inter-arrival time

Customers are served by » parallel servers

When busy, a server serves at rate 1 (customers per time unit)
— 1/u = average service time of a customer

There are n + m customer places in the system

— at least n service places and at most m waiting places
It is assumed that blocked customers (arriving in a full system) are lost
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Pure sharing system

* Finite number of servers (n < o), infinite number of service places
(n + m = o), no waiting places

— If there are at most n customers in the system (x < n), each customer has
its own server. Otherwise (x > n), the total service rate (np) is shared fairly
among all customers.

— Thus, the rate at which a customer is served equals min{u,7u/x}

— No customers are lost, and no one needs to wait before the service.

— But the delay is the greater, the more there are customers in the system.
Thus, delay is an interesing measure from the customer’s point of view.
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M/M/1-PS queue

» Consider the following simple teletraffic model:

Infinite number of independent customers (k£ = )
Interarrival times are 11D and exponentially distributed with mean 1/A
* so0, customers arrive according to a Poisson process with intensity A
One server (n=1)
Service requirements are 11D and exponentially distributed with mean 1/u

Infinite number of customer places (p = )

Queueing discipline: PS. All customers are served simultaneously in a fair
way with equal shares of the service capacity U.

» Using Kendall’s notation, this is an M/M/1-PS queue
* Notation:

0 = A = traffic load




State transition diagram

Let X(7) denote the number of customers in the system at time ¢

— Assume that X(?) = i at some time ¢, and
consider what happens during a short time interval (¢, t+A]:

« with prob. Az + o(h),
a new customer arrives (state transition i — i+1)

« if i > 0, then, with prob. i(Wih + o(h) = wh + o(h),
a customer leaves the system (state transition i > i—1)

Process X(¢) is clearly a Markov process with state transition diagram
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Note that this is the same irreducible birth-death process with an infinite
state space S = {0,1,2,...} as for the M/M/1-FIFO queue.




Equilibrium distribution (1)

Local balance equations (LBE):

T = T (LBE)
= T+ :%”i = PTT;

= 7T =,0i72'0, i=0,12,...

Normalizing condition (N):

2.7 =7 2 p =1 (N)
i=0 i=0
o0 . -1 1
— 7[0:(2,01] :(#T =1-p, 1if p<l
i=0




Equilibrium distribution (2)

« Thus, for a stable system (p < 1), the equilibrium distribution exists
and is a geometric distribution:

o<l = X ~Geom(p)
P{X=it=m=(-p)p’, i=012,...

_ P 2 %
E[X]_Ea D [X]_(l—p)2

« Remark: Insensitivity with respect to service time distribution
— The result for the PS discipline is insensitive to the service time
distribution, that is: it is valid for any service time distribution with mean 1/u

— So, instead of the M/M/1-PS model, we can consider, as well, the more
general M/G/1-PS model




Mean delay

Let D denote the total time (delay) in the system of a (typical) customer

Since the mean number of customers in the system, E£[.X], is the same
for all work-conserving queueing disciplines, also the mean delay is the
same, by Little’s result.

Thus, we may apply the result derived for the FIFO discipline in Lect. 8:

E[D]

_ 1.1
u l-p
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Mean delay E[D] vs. traffic load p

— Note that the time unit is the average service requirement E[S]
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Relative throughput

A quality of service measure is the relative throughput E[S]/E[D]:

E[SI_ 1. ,0-,)=1—
gD~ Hl-p)=1-p
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Relative throughput E[S]/E|D] vs. traffic load p
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M/M/n-PS queue

» Consider the following simple teletraffic model:

Infinite number of independent customers (k = o)
Interarrival times are 11D and exponentially distributed with mean 1/A

« s0, customers arrive according to a Poisson process with intensity A
Finite number of servers (n < o)
Service requirements are 11D and exponentially distributed with mean 1/u
Infinite number of customer places (p = o0)

Queueing discipline: PS. If there are at most n customers in the system
(i £ n), each customer has its own server. Otherwise (i > n), the total
service rate (n) is shared fairly among all customers.

« Using Kendall’s notation, this is an M/M/n-PS queue
* Notation:

0 = M(np) = traffic load
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State transition diagram

» Let X(¢#) denote the number of customers in the system at time #

— Assume that X(?) = i at some time ¢, and
consider what happens during a short time interval (¢, t+A]:

« with prob. Az + o(h),
a new customer arrives (state transition i — i+1)

« if i >0, then, with prob. i-min{pw,nW/i}-h + o(h) = min{i,n}-uwh + o(h),
a customer leaves the system (state transition i > i—1)

* Process X(7) is clearly a Markov process with state transition diagram

@ . ’(/1\) : > . ’(/\) : ’(/\1) . >
<« < °*° N e n+1 e oo

* Note that this is the same irreducible birth-death process with an infinite
state space S = {0,1,2,...} as for the M/M/n-FIFO queue.
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Equilibrium distribution (1)

« Local balance equations (LBE) for i < n:

mid =i (i +Du (LBE)
- A L PP

= il = Ganyp T i

- 7 (f) g, i=01,....n

* Local balance equations (LBE) for i > n:

A =T nu (LBE)
= Wi+l = %”i = P7T;
n i

i—n i—n (np)” n'p
|

= ;=P T,=p 0= Ty, i=n,n+1,...17




Equilibrium distribution (2)

Normalizing condition (N):

o0 n—1 i O n i
_ (np) n-p
Zﬂi o 72-0( Z j! + Z 7!

. —1
n—1 j n o0 .
= no{z(”? W j
i=0 " i=nm

):1 (N)

: —1
n—1 I n
:(z(”f’) +}f!’gf_)p)j =L irpe<

=0 " e
n—1 i n
. S (np) _ (np)
Notation: a = )| T p= nl(1- p)
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Equilibrium distribution (3)

« Thus, for a stable system (p < 1, thatis: A < npu), the equilibrium
distribution exists and is as follows:

p<l =
[ i
(”’g) -aiﬂ, i=01,...n
P{X=i}=m; =<5 .
n 1
el i=n,n+1
ol a+p T T

* Remark: Insensitivity with respect to service time distribution
— The result for the PS discipline is insensitive to the service time

distribution, that is: it is valid for any service time distribution with mean 1/u

— So, instead of the M/M/n-PS model, we can consider, as well, the more
general M/G/n-PS model
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Mean delay

Let D denote the total time (delay) in the system of a (typical) customer

Since the mean number of customers in the system, E£[.X], is the same
for all work-conserving queueing disciplines, also the mean delay is the
same, by Little’s result.

Thus, we may apply the result derived for the FIFO discipline in Lect. 8:

_ 1 Pw
E[D]= (1—p)+1J

— where p,, refers to the probability

. o _w .1 (np)" _ B
pw =PiX Zn}:Zﬂi22ﬂ0'7:ﬂ0°ng(1_p):a+lg

I=n I=n
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Mean delay E[D] vs. traffic load p

— Note that the time unit is the average service requirement E[S]
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Relative throughput

« A quality of service measure is the relative throughput E[S]/E[D]:

E[S] _ n(l-p) _ n(-p)

1.,,. —
E[D] u H py (n)+n(1-p)  py (n)+n(l-p)

BSl . lp .
EID]~ py()ii—p 1P

. HSI_ 2-p) . 2
"=2 BT py@e20-p) P

=1:
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Relative throughput E[S]/E|D] vs. traffic load p
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Application to flow level modelling of elastic data traffic

 M/G/n-PS model is applicable to flow level modelling of elastic data
traffic
— customer = TCP flow

— A = flow arrival rate (flows per time unit)
— r = access link speed for a flow (data units per time unit)
— C = nr = speed of the shared link (data units per time unit)
— E[L] = average flow size (data units)
— E[S] = 1/u = E[L]/r = average flow transfer time with access link rate
—  p = M(np) = traffic load
« A quality of service measure is the throughput

g = ELL] _ rE[S] _ r-n(l-p) _C. (1-p)
E[D] E[D] py(n)+n(-p) pwy (n)+n(l-p)

25




Throughput 0 vs. traffic load p

— Note that the rate unit is the link rate C
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M/M/1/k/k-PS queue

Consider the following simple teletraffic model:

Finite number of independent customers (k < o)
» on-off type customers (alternating between idleness and activity)

Idle times are IID and exponentially distributed with mean 1/v
One server (n=1)
Service requirements are 11D and exponentially distributed with mean 1/u

As many customer places as customers (p = k)
Queueing discipline: PS.

Using Kendall’s notation, this is an M/M/1/k/k-PS queue
On-off type customer:

0

service

idleness

28




State transition diagram

Let X(7) denote the number of customers in the system at time ¢

— Assume that X(?) = i at some time ¢, and
consider what happens during a short time interval (¢, t+A]:

« if i <k, then, with prob. (k—)vh + o(h),

an idle customer becomes active (state transition i — i+1)
« if i > 0, then, with prob. i(Wih + o(h) = n + o(h),

an active customer becomes idle (state transition i — i—1)

Process X(¢) is clearly a Markov process with state transition diagram

@ & ’(/1\) (k—l)v:... 2 ’(ﬂ) ’ ’@
h M U‘ M h H U‘ H

Note that process X(7) is an irreducible birth-death process
with a finite state space S'= {0,1,...,k}
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Equilibrium distribution (1)

Local balance equations (LBE):

(k=i = 7y (LBE)
— 7T _(kfi)v i+1
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Equilibrium distribution (2)

Normalizing condition (N):

k k | pk—i
27 =7 L) =1
i=0 i=0

1
K ki 1
= Tk = Zb(k—i)!(?) = £
1= l
> 4()
i=0
! () M
= 7T :”k.(kli)!(g)l =4 _kl).l —
N
b

(N)
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9. Sharing systems

THE END
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