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8. Queueing systems

Simple teletraffic model

• Customers arrive at rate λ (customers per time unit)

– 1/λ = average inter-arrival time

• Customers are served by n parallel servers

• When busy, a server serves at rate µ (customers per time unit)

– 1/µ = average service time of a customer

• There are n + m customer places in the system

– at least n service places and at most m waiting places

• It is assumed that blocked customers (arriving in a full system) are lost
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8. Queueing systems

Pure queueing system

• Finite number of servers (n < ∞), n service places, infinite number of 

waiting places (m = ∞)

– If all n servers are occupied when a customer arrives, 

it occupies one of the waiting places

– No customers are lost but some of them have to wait before getting served

• From the customer’s point of view, it is interesting to know e.g. 

– what is the probability that it has to wait “too long”?
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8. Queueing systems

Queueing discipline

• Consider a single server (n = 1) queueing system

• Queueing discipline determines the way the server serves the 

customers

– It tells 

• whether the customers are served one-by-one or simultaneously

– Furthermore, if the customers are served one-by-one, it tells 

• in which order they are taken into the service

– And if the customers are served simultaneously, it tells 

• how the service capacity is shared among them

• Note: In computer systems the corresponding concept is scheduling

• A queueing discipline is called work-conserving if customers are 

served with full service rate µ whenever the system is non-empty
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8. Queueing systems

Work-conserving queueing disciplines

• First In First Out (FIFO) = First Come First Served (FCFS)

– ordinary queueing discipline (“queue”)

• arrival order = service order

– customers served one-by-one (with full service rate µ)

– always serve the customer that has been waiting for the longest time

– default queueing discipline in this lecture

• Last In First Out (LIFO) = Last Come First Served (LCFS)

– reversed queuing discipline (“stack”)

– customers served one-by-one (with full service rate µ)

– always serve the customer that has been waiting for the shortest time

• Processor Sharing (PS)

– “fair queueing”

– customers served simultaneously

– when i customers in the system, each of them served with equal rate µ/i

– see Lecture 9. Sharing systems
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8. Queueing systems

M/M/1 queue

• Consider the following simple teletraffic model:

– Infinite number of independent customers (k = ∞)

– Interarrival times are IID and exponentially distributed with mean 1/λ

• so, customers arrive according to a Poisson process with intensity λ

– One server (n = 1)

– Service times are IID and exponentially distributed with mean 1/µ

– Infinite number of waiting places (m = ∞)

– Default queueing discipline: FIFO

• Using Kendall’s notation, this is an M/M/1 queue

– more precisely: M/M/1-FIFO queue

• Notation:

– ρ = λ/µ = traffic load
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8. Queueing systems

Related random variables

• X = number of customers in the system at an arbitrary time  

= queue length in equilibrium

• X* = number of customers in the system at an (typical) arrival time 
= queue length seen by an arriving customer

• W = waiting time of a (typical) customer

• S = service time of a (typical) customer

• D = W + S = total time in the system of a (typical) customer = delay
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8. Queueing systems

State transition diagram

• Let X(t) denote the number of customers in the system at time t

– Assume that X(t) = i at some time t, and 

consider what happens during a short time interval (t, t+h]:

• with prob. λh + o(h), 

a new customer arrives (state transition i→ i+1)

• if i > 0, then, with prob. µh + o(h), 

a customer leaves the system (state transition i→ i−1)

• Process X(t) is clearly a Markov process with state transition diagram

• Note that process X(t) is an irreducible birth-death process 

with an infinite state space S = {0,1,2,...}
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8. Queueing systems

Equilibrium distribution (1)

• Local balance equations (LBE):

• Normalizing condition (N):
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8. Queueing systems

Equilibrium distribution (2)

• Thus, for a stable system (ρ < 1),  the equilibrium distribution exists 
and is a geometric distribution:

• Remark: 

– This result is valid for any work-conserving queueing discipline (FIFO, 

LIFO, PS, ...)

– This result is not insensitive to the service time distribution for FIFO

• even the mean queue length E[X] depends on the distribution

– However, for any symmetric queueing discipline (such as LIFO or PS) 

the result is, indeed, insensitive to the service time distribution
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8. Queueing systems

Mean queue length E[X] vs. traffic load ρ
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8. Queueing systems

Mean delay

• Let D denote the total time (delay) in the system of a (typical) customer

– including both the waiting time W and the service time S: D = W + S

• Little’s formula: E[X] = λ⋅E[D]. Thus,

• Remark: 

– The mean delay is the same for all work-conserving queueing disciplines 

(FIFO, LIFO, PS, …)

– But the variance and other moments are different!
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8. Queueing systems
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8. Queueing systems

Mean waiting time

• Let W denote the waiting time of a (typical) customer

• Since W = D − S, we have 
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8. Queueing systems

Waiting time distribution (1)

• Let W denote the waiting time of a (typical) customer

• Let X* denote the number of customers in the system at the arrival time

• PASTA: P{X* = i} = P{X = i} = π
i
.

• Assume now, for a while, that X* = i

– Service times S
2
,…,S

i
of the waiting customers are IID and ∼ Exp(µ)

– Due to the memoryless property of the exponential distribution, 

the remaining service time S
1
* of the customer in service also follows 

Exp(µ)-distribution (and is independent of everything else)

– Due to the FIFO queueing discipline, W = S
1
* + S

2
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– Construct a Poisson (point) process τ
n
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8. Queueing systems

Waiting time distribution (2)

• Since W = 0⇔ X* = 0 , we have

• Denote by A(t) the Poisson (counter) process corresponding to τ
n

– It follows that: τ
i
> t⇔ A(t) ≤ i−1

– On the other hand, we know that A(t) ∼ Poisson (µt). Thus,
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8. Queueing systems

Waiting time distribution (3)

• By combining the previous formulas, we get 

ttt

j

t

j

t

j ji

jit

j

t

i

i

j

it

j

t

i

i
i

eeee

e

e

tPtWP

j

j

j

)1(

0
!

)(

0 1

)1(

!

)(

1

1

0
!

)(

1

     

)1(   

)1(   

)1}({}{

ρµµρµµρµ

µρµ

µµ

ρρρ

ρρρ

ρρ

ρρτ

−−−
∞

=

−

∞

=

∞

+=

+−−

∞

=

−

=

−

∞

=

===

−=

−=

−>=>

∑

∑ ∑

∑ ∑

∑



21

8. Queueing systems

Waiting time distribution (4)

• Waiting time W can thus be presented as a product W = JD of two 

independent random variables J ∼ Bernoulli(ρ) and D ∼ Exp(µ(1−ρ)):
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8. Queueing systems
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8. Queueing systems

Application to packet level modelling of data traffic

• M/M/1 model may be applied (to some extent) to packet level modelling

of data traffic

– customer = IP packet

– λ = packet arrival rate (packets per time unit)

– 1/µ = average packet transmission time (aikayks.)

– ρ = λ/µ = traffic load

• Quality of service is measured e.g. by the packet delay

– P
z
= probability that a packet has to wait “too long”, i.e. longer than a given 

reference value z
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8. Queueing systems

Multiplexing gain

• We determine load ρ so that prob. P
z
< 1% for z = 1 (time units)

• Multiplexing gain is described by the traffic load ρ as a function of the 

service rate µ

load ρ

service rate µ
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8. Queueing systems

M/M/n queue

• Consider the following simple teletraffic model:

– Infinite number of independent customers (k = ∞)

– Interarrival times are IID and exponentially distributed with mean 1/λ

• so, customers arrive according to a Poisson process with intensity λ

– Finite number of servers (n < ∞)

– Service times are IID and exponentially distributed with mean 1/µ

– Infinite number of waiting places (m = ∞)

– Default queueing discipline: FCFS

• Using Kendall’s notation, this is an M/M/n queue

– more precisely: M/M/n-FCFS queue

• Notation:

– ρ = λ/(nµ) = traffic load
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8. Queueing systems

State transition diagram

• Let X(t) denote the number of customers in the system at time t

– Assume that X(t) = i at some time t, and 

consider what happens during a short time interval (t, t+h]:

• with prob. λh + o(h), 

a new customer arrives (state transition i → i+1)

• if i > 0, then, with prob. min{i,n}⋅µh + o(h), 

a customer leaves the system (state transition i → i−1)

• Process X(t) is clearly a Markov process with state transition diagram

• Note that process X(t) is an irreducible birth-death process 

with an infinite state space S = {0,1,2,...}

1

λ

2µ
0

λ

µ
n n+1

λ

nµ

λ

nµ

λ

nµ



28

8. Queueing systems

28

Equilibrium distribution (1)

• Local balance equations (LBE) for i < n:

• Local balance equations (LBE) for i ≥ n:
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8. Queueing systems

Equilibrium distribution (2)

• Normalizing condition (N):
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8. Queueing systems

Equilibrium distribution (3)

• Thus, for a stable system (ρ < 1, that is: λ < nµ),  the equilibrium 
distribution exists and is as follows:
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8. Queueing systems

Probability of waiting

• Let p
W
denote the probability that an arriving customer has to wait

• Let X* denote the number of customers in the system at an arrival time

• An arriving customer has to wait whenever all the servers are occupied 

at her arrival time. Thus,

• PASTA: P{X* = i} = P{X = i} = π
i
. Thus,
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8. Queueing systems

Mean number of waiting customers

• Let X
W
denote the number of waiting customers in equilibrium

• Then
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8. Queueing systems

Mean waiting time

• Let W denote the waiting time of a (typical) customer

• Little’s formula: E[X
W
] = λ⋅E[W]. Thus,
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8. Queueing systems

Mean delay

• Let D denote the total time (delay) in the system of a (typical) customer

– including both the waiting time W and the service time S: D = W + S

• Then,
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8. Queueing systems

Mean queue length

• Let X denote the number of customers in the system (queue length) in 

equilibrium

• Little’s formula: E[X] = λ⋅E[D]. Thus,
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8. Queueing systems

Waiting time distribution (1)

• Let W denote the waiting time of a (typical) customer

• Let X* denote the number of customers in the system at the arrival time

• The customer has to wait only if X* ≥ n. This happens with prob. p
W
. 

• Under the assumption that X* = i ≥ n, the system, however, looks like 

an ordinary M/M/1 queue with arrival rate λ and service rate nµ.

– Let W’ denote the waiting time of a (typical) customer in this M/M/1 queue

– Let X*’ denote the number of customers in the system at the arrival time

• It follows that 
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8. Queueing systems

Waiting time distribution (2)

• Waiting time W can thus be presented as a product W = JD’ of two 

indep. random variables J ∼ Bernoulli(p
W
) and D’ ∼ Exp(nµ(1−ρ)):
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8. Queueing systems

Example (1)

• Printer problem

– Consider the following two different configurations:

• One rapid printer (IID printing times ∼ Exp(2µ))

• Two slower parallel printers (IID printing times ∼ Exp(µ))

– Criterion: minimize mean delay E[D]

• One rapid printer (M/M/1 model with ρ = λ/(2µ)):

• Two slower printers (M/M/2 model with ρ = λ/(2µ)): 
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8. Queueing systems
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8. Queueing systems

THE END


