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Simple teletraffic model

Customers arrive at rate A (customers per time unit)
— 1/\ = average inter-arrival time

Customers are served by » parallel servers

When busy, a server serves at rate 1 (customers per time unit)
— 1/u = average service time of a customer

There are n + m customer places in the system

— at least n service places and at most m waiting places
It is assumed that blocked customers (arriving in a full system) are lost
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Pure queueing system

* Finite number of servers (n < ), n service places, infinite number of
waiting places (m = o)

— If all n servers are occupied when a customer arrives,
it occupies one of the waiting places

— No customers are lost but some of them have to wait before getting served
* From the customer’s point of view, it is interesting to know e.g.
— what is the probability that it has to wait “too long™?
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Queueing discipline

Consider a single server (n = 1) queueing system
Queueing discipline determines the way the server serves the
customers
— It tells
* whether the customers are served one-by-one or simultaneously
— Furthermore, if the customers are served one-by-one, it tells
 in which order they are taken into the service
— And if the customers are served simultaneously, it tells
* how the service capacity is shared among them

Note: In computer systems the corresponding concept is scheduling

A queueing discipline is called work-conserving if customers are
served with full service rate u whenever the system is non-empty




Work-conserving queueing disciplines

» First In First Out (FIFO) = First Come First Served (FCFS)

— ordinary queueing discipline (“queue”)

 arrival order = service order

— customers served one-by-one (with full service rate )

— always serve the customer that has been waiting for the longest time

— default queueing discipline in this lecture
» Last In First Out (LIFO) = Last Come First Served (LCFS)

— reversed queuing discipline (“stack”)

— customers served one-by-one (with full service rate )

— always serve the customer that has been waiting for the shortest time
» Processor Sharing (PS)

— “fair queueing”

— customers served simultaneously

— when i customers in the system, each of them served with equal rate /i

— see Lecture 9. Sharing systems /
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M/M/1 queue

Consider the following simple teletraffic model:
— Infinite number of independent customers (k = )
— Interarrival times are 1ID and exponentially distributed with mean 1/A
« s0, customers arrive according to a Poisson process with intensity A
— One server (n=1)
— Service times are 1ID and exponentially distributed with mean 1/u

— Infinite number of waiting places (m = o0)
— Default queueing discipline: FIFO

Using Kendall’s notation, this is an M/M/1 queue
— more precisely: M/M/1-FIFO queue

Notation:
— p= A\ = traffic load




Related random variables

X = number of customers in the system at an arbitrary time
= queue length in equilibrium

X* = number of customers in the system at an (typical) arrival time
= queue length seen by an arriving customer

W = waiting time of a (typical) customer
S = service time of a (typical) customer
D = W+ § = total time in the system of a (typical) customer = delay
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State transition diagram

Let X(7) denote the number of customers in the system at time ¢

— Assume that X(?) = i at some time ¢, and
consider what happens during a short time interval (¢, t+A]:

« with prob. Az + o(h),
a new customer arrives (state transition i — i+1)

« if i > 0, then, with prob. 4 + o(h),
a customer leaves the system (state transition i > i—1)

Process X(¢) is clearly a Markov process with state transition diagram

A A A

C Sy O\ » O\ >
0 )e (1 )e [ 2 e XX
m _ m _ m

Note that process X(7) is an irreducible birth-death process
with an infinite state space S = {0,1,2,...}
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Equilibrium distribution (1)

Local balance equations (LBE):

T = T (LBE)
= T+ :%”i = PTT;

= 7T =,0i72'0, i=0,12,...

Normalizing condition (N):

2.7 =my 2 p =1 (N)
i=0 i=0

~1
— 7[0:(2,01] :(LT =1-p, 1if p<l
i=0




Equilibrium distribution (2)

« Thus, for a stable system (p < 1), the equilibrium distribution exists
and is a geometric distribution:

o<l = X ~Geom(p)
P{X=it=m=(-p)p’, i=012,...
ElX]=2, D’[X]= "

l=p (1-p)°
 Remark:
— This result is valid for any work-conserving queueing discipline (FIFO,
LIFO, PS, ...)

— This result is not insensitive to the service time distribution for FIFO

« even the mean queue length E[X] depends on the distribution

— However, for any symmetric queueing discipline (such as LIFO or PS)
the result is, indeed, insensitive to the service time distribution

13




Mean queue length E|X] vs. traffic load p
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Mean delay

« Let D denote the total time (delay) in the system of a (typical) customer
— including both the waiting time /7 and the service time S: D=W+§

« Little’'s formula: E[X] = A-E[D]. Thus,

_EXT_1 P 11 _ 1
BLoT= A Al-p ul-p u-2A

e Remark:

— The mean delay is the same for all work-conserving queueing disciplines
(FIFO, LIFO, PS, ...)

— But the variance and other moments are different!
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8. Queueing systems

Mean delay E[D] vs. traffic load p
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Mean waiting time

» Let ¥ denote the waiting time of a (typical) customer
« Since W=D — S, we have

E[W]=E[D]-E[S]= 11—,
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Waiting time distribution (1)

Let W denote the waiting time of a (typical) customer

Let X* denote the number of customers in the system at the arrival time
PASTA: P{X* =i} =P{X=i} =m,

Assume now, for a while, that X* =

— Service times S,,...,S; of the waiting customers are |ID and ~ Exp(L.)
— Due to the memoryless property of the exponential distribution,
the remaining service time S;* of the customer in service also follows
Exp()-distribution (and is independent of everything else)
— Due to the FIFO queueing discipline, W =S§*+ S5, + ... + 5,

— Construct a Poisson (point) process t, by defining T, =S, * and
T,=8*+85,+...+S5,n>=2. Now (since X*=i) W>t1,>1

| Sl* |S2| S3 | | Si—l | S

T | | | T 1
T, T T T, T, 18
0 1 2 3 -1




Waiting time distribution (2)

Since W=0< X*=0, we have

PW =0}=P{X*=0l=7y=1-p

P{W>z‘}:iP{W>t|X*=i}P{X*:i}

i=1
=2 Ple;>t}m; = 2 Plr; >13(1-p)p
i=1 i=1

Denote by A(7) the Poisson (counter) process corresponding to t,

— It follows that: t,> ¢t < A(¥) <i-1
— On the other hand, we know that A(¢) ~ Poisson (ue). Thus,

Plr; > 1) = PLA(t) <i—1} = z (“’)
Jj=0

19




Waiting time distribution (3)

By combining the previous formulas, we get

POV > 1= 3 Piz; > 131 p)p

i=1
o j—1
N :
_Zz(ﬂ) H (1= p)p!
= 1] 0
Jj= i=j+1
=,y W) PV My HIP gt _ 5 o= (=P

j=0
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Waiting time distribution (4)

Waiting time W can thus be presented as a product W =JD of two
independent random variables J ~ Bernoulli(p) and D ~ Exp(u(1-p)):

PW=0=P{J=0=1-p
PW>t=PJ=1D>t =p-e “1=P1 ;5
o,

EW]=E[JIED]=p- b =112

E[W?]=P{J =BED*]=p-— 2 =L. 2~
po(d=-p)=  u® (1-p)

u- (1-p)
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Application to packet level modelling of data traffic

« M/M/1 model may be applied (to some extent) to packet level modelling
of data traffic

— customer = IP packet
— A = packet arrival rate (packets per time unit)
— 1/u = average packet transmission time (aikayks.)
— p = A = traffic load
« Quality of service is measured e.g. by the packet delay

— P, = probability that a packet has to wait “too long”, i.e. longer than a given
reference value z

P, = PW >z} = pe #U7P)2
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Multiplexing gain

We determine load p so that prob. P, < 1% for z =1 (time units)

Multiplexing gain is described by the traffic load p as a function of the
service rate 1

1
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load p .
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0.2
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service rate 1
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M/M/n queue

Consider the following simple teletraffic model:

Infinite number of independent customers (k£ = )
Interarrival times are 11D and exponentially distributed with mean 1/A
* so0, customers arrive according to a Poisson process with intensity A
Finite number of servers (n < o)
Service times are |IID and exponentially distributed with mean 1/p

Infinite number of waiting places (m = o)
Default queueing discipline: FCFS

Using Kendall’s notation, this is an M/M/n queue

more precisely: M/M/n-FCFS queue

Notation:

0 = A/(np) = traffic load
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State transition diagram

» Let X(¢#) denote the number of customers in the system at time #

— Assume that X(?) = i at some time ¢, and
consider what happens during a short time interval (¢, t+A]:

« with prob. Az + o(h),
a new customer arrives (state transition i — i+1)

« if i > 0, then, with prob. min{i,n}-uh + o(h),
a customer leaves the system (state transition i > i—1)

* Process X(7) is clearly a Markov process with state transition diagram

@ " ’(/1\) L " ’(/\) " ’(/\1) " >
<« < °*° N e n+1 e oo

* Note that process X(7) is an irreducible birth-death process
with an infinite state space S = {0,1,2,...}
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Equilibrium distribution (1)

« Local balance equations (LBE) for i < n:

mid =i (i +Du (LBE)
- A L PP

= il = Ganyp T i

- 7 (f) g, i=01,....n

* Local balance equations (LBE) for i > n:

A =T nu (LBE)
= Wi+l = %”i = P7T;
n i

i—n i—n (np)” n'p
|

= ;=P T,=p 0= Ty, i=n,n+1,...28




Equilibrium distribution (2)

Normalizing condition (N):

o0 n—1 i O n i
_ (np) n-p
Zﬂi o 72-0( Z j! + Z 7!

. —1
n—1 j n o0 .
= no{z(”? W j
i=0 " i=nm

):1 (N)

: —1
n—1 I n
:(z(”f’) +}f!’gf_)p)j =L irpe<

=0 " e
n—1 i n
. S (np) _ (np)
Notation: a = )| T p= nl(1- p)
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Equilibri

um distribution (3)

Thus, for a stable system (p < 1, that is: A < nu), the equilibrium

distribution exists and is as follows:

p<l =

P{X =i} =m; =

(”Z)i.a}rﬂ, i=01,..,n
k”};f!’l a}rﬂ, i=nn+l,
é, ﬂgzﬁ 1-p
ﬂ=%» ”o:aiﬁ:;ﬁ
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Probability of waiting

Let py, denote the probability that an arriving customer has to wait

Let X* denote the number of customers in the system at an arrival time

An arriving customer has to wait whenever all the servers are occupied
at her arrival time. Thus,

pW ZP{X*ZI’Z}

PASTA: P{X* =i} = P{X =i} =, Thus,

© oo n i 7
pW:P{X*Zn}:Zﬂ'i:Zﬂ'O.u:ﬂ. (np) B

_ , n! 0 n!(1-p) - a+f
I1=n I1=n
n=1: Pw = O
2
2
n=2: Pw ZL 31
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Mean number of waiting customers

 Let X, denote the number of waiting customers in equilibrium
« Then

E[Xy 1= Y(-ny; =79 02 > zo —n)-(1=p)p""
1=n
_ P
_pW.E
p _ p°
n=1: E[XW]:pW'l_pzl_p

3

2
— . — . p _2p * p — 2p
n=2: ElXwl=pw-1_,=1, l-p 1,2
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Mean waiting time

- Let W denote the waiting time of a (typical) customer
« Little’s formula: E[X),] = A-E[W]. Thus,

ElX
EW) =" = Ly 2

—1: Ewl=LlL.Pw _1 P
7 W] Hl-p pul-p

2
=2: EW]=L.. 2" 1.7
/! ] po2l=p) 1o p?
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Mean delay

« Let D denote the total time (delay) in the system of a (typical) customer

— including both the waiting time /7 and the service time S: D=W+§
« Then,

E[D]:E[W]+E[S]:l-( P +1):pW. Lo, 1
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Mean queue length

« Let X denote the number of customers in the system (queue length) in
equilibrium

« Little’s formula: E[X] = A-E[D]. Thus,

E[X1=1-E[D]=py -2 +%=pp - L +np

nu—-A ' u 1-p
n=1: E[X]=py £ +p=pt+p=15
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Waiting time distribution (1)

Let W denote the waiting time of a (typical) customer
Let X* denote the number of customers in the system at the arrival time
The customer has to wait only if X* > n. This happens with prob. p.

Under the assumption that X* =i > n, the system, however, looks like
an ordinary M/M/1 queue with arrival rate A and service rate n.

— Let I’ denote the waiting time of a (typical) customer in this M/M/1 queue
— Let X*’ denote the number of customers in the system at the arrival time

It follows that
PW =0} =1-py
P{W >t} =P{X*>n}P{W >t| X*>n}
= pw P> 1| X*¥21) = py - HU=PY 45 0
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Waiting time distribution (2)

Waiting time W can thus be presented as a product W =.JD " of two
indep. random variables J ~ Bernoulli(py;) and D’ ~ Exp(nu(1-p)):

PW =0=P{J=0}=1-py
PW >ty=P{J=1,D'> 1t} = pyr-e "“I=P) 0

E[W]= E[J]E[D'] = py - ﬂ(ll_ > ﬁ ,,,(]fKV )

EW2]=PJ=DED?1=py- - 2 = 1. 20w

n?u?(-p)?  u? n*(-p)?

u- n-(l-p)
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Example (1)

* Printer problem
— Consider the following two different configurations:

* One rapid printer (IID printing times ~ Exp(2))

« Two slower parallel printers (11D printing times ~ Exp(l))
— Criterion: minimize mean delay E[D]

« One rapid printer (M/M/1 model with p = A/(2)):

_ 1 1
E[Dl]_Zy 1—,0
« Two slower printers (M/M/2 model with p = A/(2)):
EID,1=1. 1 _ 1, 2 —EID:1--2 S E[D
D2 1= 1-p2 24 (=p)+p) P, > £
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8. Queueing systems

Example (2)
/
0. ]
0.
EIDV/E[D,] Ny
0.
.2 0.4 0.6 .8
Traffic load p
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8. Queue

ing systems

THE END
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