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Simple teletraffic model

Customers arrive at rate A (customers per time unit)
— 1/\ = average inter-arrival time

Customers are served by » parallel servers

When busy, a server serves at rate 1 (customers per time unit)
— 1/u = average service time of a customer

There are n + m customer places in the system

— at least n service places and at most m waiting places
It is assumed that blocked customers (arriving in a full system) are lost
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Infinite system

* Infinite number of servers (n = ©), no waiting places (m = 0)

No customers are lost or even have to wait before getting served

*  Sometimes,
— this hypothetical model can be used to get some approximate results for a

real system (with finite system capacity)

« Always,

it gives bounds for the performance of a real system (with finite system
capacity)
it is much easier to analyze than the corresponding finite capacity models
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Pure loss system

» Finite number of servers (n < ), n service places, no waiting places
(m=0)
— If the system is full (with all » servers occupied) when a customer arrives,
it is not served at all but lost
— Some customers may be lost
* From the customer’s point of view, it is interesting to know e.g.
— What is the probability that the system is full when it arrives?
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Poisson model (M/M/x)

« Definition: Poisson model is the following simple teletraffic model:
— Infinite number of independent customers (k = )
— Interarrival times are IID and exponentially distributed with mean 1/A
* so0, customers arrive according to a Poisson process with intensity A
— Infinite number of servers (n = o)
— Service times are 1ID and exponentially distributed with mean 1/u
— No waiting places (m = 0)
« Poisson model:

— Using Kendall's notation, this is an M/M/e queue
— Infinite system, and, thus, lossless

* Notation:
— a = M = traffic intensity




State transition diagram

Let X(7) denote the number of customers in the system at time ¢

— Assume that X(?) = i at some time ¢, and
consider what happens during a short time interval (¢, t+A]:

« with prob. Az + o(h),
a new customer arrives (state transition i — i+1)

« if i >0, then, with prob. ip/ + o(h),
a customer leaves the system (state transition i > i—1)

Process X(¢) is clearly a Markov process with state transition diagram

A A A
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Note that process X(7) is an irreducible birth-death process
with an infinite state space S = {0,1,2,...}




Equilibrium distribution (1)

Local balance equations (LBE):

7iA =i i+ D (LBE)

« Normalizing condition (N):

2. =my )4 =1 (N)
i=0 i=0 "




Equilibrium distribution (2)

* Thus, the equilibrium distribution is a Poisson distribution:
X ~ Poisson(a)
i — .
P{X =i} =m; z%e 4 i=012,...

E[X]=a, D*[X]=a

« Remark: Insensitivity with respect to service time distribution

— The result is insensitive to the service time distribution, that is:
it is valid for any service time distribution with mean 1/u

— So, instead of the M/M/o0 model,
we can consider, as well, the more general M/G/e model
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Application to flow level modelling of streaming data traffic

Poisson model may be applied to flow level modelling of streaming data
traffic
— customer = UDP flow with constant bit rate (CBR)

— A = flow arrival rate (flows per time unit)

— h=1/u = average flow duration (time units)

— a =M = traffic intensity

— r = bit rate of a flow (data units per time unit)

— N =nr of active flows obeying Poisson(a) distribution

When the total transmission rate Nr exceeds the link capacity C =nr,
bits are lost

— loss ratio p, . gives the ratio between the traffic lost and the traffic offered:

E[(Nr-C)*] E[(N-n)" © i
Ploss = [(EfNr]) = [(E[]\?]) ]zé 2 (l—n)%e ¢

I=n+1 12




Multiplexing gain

» We determine traffic intensity a so that loss ratio p; ., < 1%

« Multiplexing gain is described by the traffic intensity per capacity unit,
a/n, as a function of capacity »

normalized traffic
aln
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Erlang model (M/M/n/n)

Definition: Erlang model is the following simple teletraffic model:
— Infinite number of independent customers (k = )
— Interarrival times are IID and exponentially distributed with mean 1/A
* so0, customers arrive according to a Poisson process with intensity A
— Finite number of servers (n < o)
— Service times are 1ID and exponentially distributed with mean 1/u
— No waiting places (m = 0)
Erlang model:

— Using Kendall's notation, this is an M/M/n/n queue
— Pure loss system, and, thus, lossy

Notation:
— a = M = traffic intensity
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State transition diagram

Let X(7) denote the number of customers in the system at time ¢

— Assume that X(?) = i at some time ¢, and
consider what happens during a short time interval (¢, t+A]:

« with prob. Az + o(h),
a new customer arrives (state transition i — i+1)

« with prob. ipu4 + o(h),
a customer leaves the system (state transition i > i—1)

Process X(¢) is clearly a Markov process with state transition diagram

A A A A

DD o
< < < Nn—1 )¢ n
uo o~ 2u (n-Du —~"" nu

Note that process X(7) is an irreducible birth-death process
with a finite state space S = {0,1,2,...,n}
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Equilibrium distribution (1)

« Local balance equations (LBE):

7iA =i i+ D (LBE)

« Normalizing condition (N):

Smi=ny 2 =1 ™)
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Equilibrium distribution (2)

« Thus, the equilibrium distribution is a truncated Poisson distribution:

P{X=i=m;=—2 i=0]1,..,n

« Remark: Insensitivity with respect to the service time distribution

The result is insensitive to the service time distribution, that is:
it is valid for any service time distribution with mean 1/u

So, instead of the M/M/n/n model,
we can consider, as well, the more general M/G/n/n model
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Time blocking

Time blocking B, = probability that all » servers are occupied at an
arbitrary time = the fraction of time that all » servers are occupied

For a stationary Markov process, this equals the probability =, of the
equilibrium distribution 7. Thus,

n

B, =P{X=n}=rm, = L

19




Call blocking

Call blocking B = probability that an arriving customer finds all

n servers occupied = the fraction of arriving customers that are lost
However, due to Poisson arrivals and PASTA property, the probability
that an arriving customer finds all n servers occupied equals the
probability that all » servers are occupied at an arbitrary time,

In other words, call blocking B, equals time blocking B:

This is Erlang’s blocking formula
20
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Application to telephone traffic modelling in trunk network

Erlang model may be applied to modelling of telephone traffic in trunk
network where the number of potential users of a link is large

— customer = call
— A = call arrival rate (calls per time unit)
— h=1/u = average call holding time (time units)
— a =M = traffic intensity
— n = link capacity (channels)
A call is lost if all » channels are occupied when the call arrives
— call blocking B, gives the probability of such an event

n a’
J=0 ;!
22




Multiplexing gain

normalized traffic

1

We determine traffic intensity a so that call blocking B, < 1%

Multiplexing gain is described by the traffic intensity per capacity unit,
a/n, as a function of capacity »
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Binomial model (M/M/k/k/k)

Definition: Binomial model is the following (simple) teletraffic model:

— Finite number of independent customers (k < o)
» on-off type customers (alternating between idleness and activity)

Idle times are IID and exponentially distributed with mean 1/v

As many servers as customers (n = k)

Service times are IID and exponentially distributed with mean 1/p

No waiting places (m = 0)

Binomial model:

— Using Kendall's notation, this is an M/M/k/k/k queue
— Although a finite system, this is clearly lossless

On-off type customer:

0

idleness

service
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On-off type customer (1)

Let Xj(t) denote the state of customer;j (j=1,2,....,k ) attime ¢
— State 0 = idle, state 1 = active = in service
— Consider what happens during a short time interval (¢, t+A]:
» if X(7) = 0, then, with prob. v/ + o(#),
the customer becomes active (state transition 0 — 1)
. ifXj(t) = 1, then, with prob. w4 + o(h),
the customer becomes idle (state transition 1 — 0)

Process Xj(t) is clearly a Markov process with state transition diagram

V [
0=—0
L

Note that process Xj(t) is an irreducible birth-death process

with a finite state space S= {0,1}
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On-off type customer (2)

Local balance equations (LBE):

(/) (/)

ny'v=m = ﬂl(j):%ﬂ(()j)

Normalizing condition (N):

7[(()j)+7zl(j) :72.(()])(1_'_%):1 — ﬂ(()j) _ 7[(]) __ Vv

v+u® 1 v+
So, the equilibrium distribution of a single customer is the Bernoulli
distribution with success probability v/(v+u)
— offered traffic is v/(v+u)

From this, we could deduce that the equilibrium distribution of the state
of the whole system (that is: the number of active customers) is the

binomial distribution Bin(4, v/(v+u))
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State transition diagram

Let X(7) denote the number of active customers

— Assume that X(?) = i at some time ¢, and
consider what happens during a short time interval (¢, t+A]:
« if i <k, then, with prob. (k—)vh + o(h),
an idle customer becomes active (state transition i — i+1)
« if i > 0, then, with prob. ip/ + o(h),
an active customer becomes idle (state transition i — i—1)

Process X(¢) is clearly a Markov process with state transition diagram

C kV :/\ (k_l)v R 2V :/\ \Y% :Q
0 < ( 1 )< oo < (k_l )< k
uo o~ 2u (k-Dp —"" ku

Note that process X(7) is an irreducible birth-death process
with a finite state space S'= {0,1,...,k}
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Equilibrium distribution (1)

Local balance equations (LBE):

mi(k—iv=m (i +1)u (LBE)
(k=i
= Tl T Gy

= = gt o = (D) mo, =01,k

Normalizing condition (N):

s s
Y= X)) =1 N
i=0 i=0

_kkvi_l_ vn—k _, H \k
= ﬂo—[lgo(i)(ﬂ)] =+ =)
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Equilibrium distribution (2)

« Thus, the equilibrium distribution is a binomial distribution:

PIX =iy=m;=()CY) GE ) =00k

EX1=fv, DPlX]=k- Y - 2 = B
V+u v+u v+u (V+m2

 Remark: Insensitivity w.r.t. service time and idle time distribution
— The result is insensitive both to the service and the idle time distribution,
that is: it is valid for any service time distribution with mean 1/u and any idle
time distribution with mean 1/v

— So, instead of the M/M/k/k/k model,

we can consider, as well, the more general G/G/k/k/k model 30
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Engset model (M/M/n/n/k)

Definition: Engset model is the following (simple) teletraffic model:
— Finite number of independent customers (k < o)
» on-off type customers (alternating between idleness and activity)
— Idle times are IID and exponentially distributed with mean 1/v
— Less servers than customers (7 < k)
— Service times are 1ID and exponentially distributed with mean 1/u

— No waiting places (m = 0) Note: If the system is
Engset model: full when an idle cust.

: , . tries to become an
— Using Kendall’s notation, this is an M/M/n/n/k queue  g.tive cust.. a new idle

— This is a pure loss system, and, thus, lossy period starts.
On-off type customer:

service blocking!

idleness idle >fidle

0
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State transition diagram

Let X(7) denote the number of active customers

— Assume that X(?) = i at some time ¢, and
consider what happens during a short time interval (¢, t+A]:
« if i <n, then, with prob. (k—i)vh + o(h),
an idle customer becomes active (state transition i — i+1)
« if i >0, then, with prob. ipu/ + o(h),
an active customer becomes idle (state transition i — i—1)

Process X(¢) is clearly a Markov process with state transition diagram

C kv N (k—1)v . (k—n+2) \: ~ (k—n+1)v: Q
0 L (1% coe | (-1 ( n
uo o~ 2u (n-Du —~"" nu

Note that process X(7) is an irreducible birth-death process
with a finite state space S= {0,1,...,n}
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Equilibrium distribution (1)

Local balance equations (LBE):

mi(k—iv=m (i +1)u (LBE)
(ki)
= Tl T gy

R BEA 1V S AV AY .
= ;= i!(k—i)!(,u) 7o = (; )(y) g, i=0,1,...,n

Normalizing condition (N):

=70 2N =1 ™)
i=0

i=0

—1
_ L k\/vaI
= ﬂo—[lgo(i ><ﬂ>]
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Equilibrium distribution (2)

« Thus, the equilibrium distribution is a truncated binomial distribution:

O O )

PX=i}=m;=— -——+ 7 i=0,...,n
k ' k ’ k—j
X (G O G
]: ]:

« Offered traffic is kv/(v+L)

 Remark: Insensitivity w.r.t. service time and idle time distribution
— The result is insensitive both to the service and the idle time distribution,
that is: it is valid for any service time distribution with mean 1/u and any
idle time distribution with mean 1/v
— So, instead of the M/M/n/n/k model,

we can consider, as well, the more general G/G/n/n/k model 35



Time blocking

Time blocking B, = probability that all » servers are occupied at an
arbitrary time = the fraction of time that all » servers are occupied

For a stationary Markov process, this equals the probability =, of the
equilibrium distribution 7. Thus,

()"
B =P{X=n}=m, =

n k U j
200
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Call blocking (1)

Call blocking B = probability that an arriving customer finds all
n servers occupied = the fraction of arriving customers that are lost

— In the Engset model, however, the “arrivals” do not follow a Poisson
process. Thus, we cannot utilize the PASTA property any more.

— In fact, the distribution of the state that an “arriving” customer sees differs
from the equilibrium distribution. Thus, call blocking B, does not equal time
blocking B, in the Engset model.
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Call blocking (2)

Let .* denote the probability that there are i active customers when an
idle customer becomes active (which is called an “arrival”)

Consider a long time interval (0,7):

— During this interval, the average time spent in state i is ©;T

— During this time, the average number of “arriving” customers (who all see
the system to be in state i) is (k—i)v-n,T

— During the whole interval, the average number of “arriving” customers is
2 (k—j)v-an

Thus,
- n(k—z)v-ﬂl-T _ n(k—z)%i isOL.m
(k=jyv-z;T > (k=) 7,
j=0 j=0
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Call blocking (3)

It can be shown (exercise!) that
k=1\,v\I
i )0,)
771'* _

S (k=1
]EO s

, 1=01,....n

If we write explicitly the dependence of these probabilities on the total
number of customers, we get the following result:

7% (k) = m;(k—=1), i=0,1,....n

In other words, an “arriving” customer sees such a system where there
is one customer less (itself!) in equilibrium
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Call blocking (4)

By choosing i = n, we get the following formula for the call blocking
probability:

B (k) =, * (k) = 7, (k1) = By (k ~ 1)

Thus, for the Engset model, the call blocking in a system with k&

customers equals the time blocking in a system with k—1 customers:

()()
Z( )()]

B, (k)= By (k~1)=

This is Engset’s blocking formula
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Application to telephone traffic modelling in access network

Engset model may be applied to modelling of telephone traffic in
access network where the nr of potential users of a link is moderate

— customer = call
— v = call arrival rate per idle user (calls per time unit)
— 1/u = average call holding time (time units)
— k= number of potential users
— n = link capacity (channels)
A call is lost if all » channels are occupied when the call arrives
— call blocking B, gives the probability of such an event

k-1 VN
H)

B, =—
5O
JZ:O s
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Multiplexing gain

« We assume that an access link is loaded by k£ = 100 potential users

«  We determine traffic intensity kv/(v+u) so that call blocking B, < 1%
« Multiplexing gain is described by the traffic intensity per capacity unit,

kv/(n(v+W)) , as a function of capacity »

normalized traffic
kvi(n(v+p))
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7. Loss systems

THE END
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