

lect03.ppt

S-38.145 - Introduction to Teletraffic Theory - Spring 2005

3. Examples

Contents

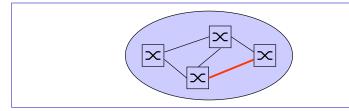
- Model for telephone traffic
- · Packet level model for data traffic
- Flow level model for elastic data traffic
- Flow level model for streaming data traffic

2

3. Examples

Classical model for telephone traffic (1)

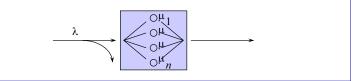
- Loss models have traditionally been used to describe (circuitswitched) telephone networks
 - Pioneering work made by Danish mathematician A.K. Erlang (1878-1929)
- · Consider a link between two telephone exchanges
 - traffic consists of the ongoing telephone calls on the link



3. Examples

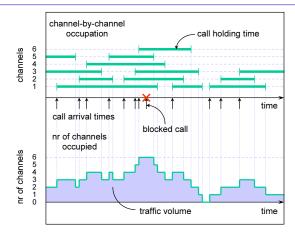
Classical model for telephone traffic (2)

- Erlang modelled this as a **pure loss system** (m = 0)
 - customer = call
 - λ = call arrival rate (calls per time unit)
 - service time = (call) holding time
 - $h = 1/\mu$ = average holding time (time units)
 - server = channel on the link
 - n = nr of channels on the link



3

Traffic process



5

3. Examples

Traffic intensity

- The strength of the offered traffic is described by the traffic intensity a
- By definition, the traffic intensity a is the product of the arrival rate λ
 and the mean holding time h:

$$a = \lambda h$$

- The traffic intensity is a dimensionless quantity. Anyway, the unit of the traffic intensity a is called erlang (erl)
- By Little's formula: traffic of one erlang means that one channel is occupied on average
- · Example:
 - On average, there are 1800 new calls in an hour, and the average holding time is 3 minutes. Then the traffic intensity is

$$a = 1800 * 3 / 60 = 90$$
 erlang

)

3. Examples

Blocking

- · In a loss system some calls are lost
 - a call is lost if all n channels are occupied when the call arrives
 - the term **blocking** refers to this event
- There are two different types of blocking quantities:
 - Call blocking $B_{\rm c}$ = probability that an arriving call finds all n channels occupied = the fraction of calls that are lost
 - Time blocking B_t = probability that all n channels are occupied at an arbitrary time = the fraction of time that all n channels are occupied
- The two blocking quantities are not necessarily equal
 - Example: your own mobile
 - But if calls arrive according to a Poisson process, then $B_c = B_t$
- Call blocking is a better measure for the quality of service experienced by the subscribers but, typically, time blocking is easier to calculate

3. Examples

Call rates

- In a loss system each call is either lost or carried. Thus, there are three types of call rates:
 - $\lambda_{offered}$ = arrival rate of all call attempts
 - $\lambda_{carried}$ = arrival rate of carried calls
 - $-\lambda_{lost}$ = arrival rate of lost calls

 $\frac{\lambda_{\text{offered}} \quad \lambda_{\text{carrie}}}{\lambda_{\text{lost}}}$

$$\lambda_{\text{offered}} = \lambda_{\text{carried}} + \lambda_{\text{lost}} = \lambda$$

$$\lambda_{\text{carried}} = \lambda(1 - B_{\text{c}})$$

$$\lambda_{\text{lost}} = \lambda B_{\text{c}}$$

Traffic streams

- The three call rates lead to the following three traffic concepts:
 - Traffic offered $a_{\text{offered}} = \lambda_{\text{offered}} h$
 - Traffic carried $a_{\text{carried}} = \lambda_{\text{carried}} h$
 - Traffic lost $a_{\text{lost}} = \lambda_{\text{lost}} h$

$$a_{\text{offered}} = a_{\text{carried}} + a_{\text{lost}} = a$$

 $a_{\text{carried}} = a(1 - B_{\text{c}})$
 $a_{\text{lost}} = aB_{\text{c}}$

 Traffic offered and traffic lost are hypothetical quantities, but traffic carried is measurable, since (by Little's formula) it corresponds to the average number of occupied channels on the link

9

3. Examples

Teletraffic analysis (2)

 Then the quantitive relation between the three factors (system, traffic, and quality of service) is given by Erlang's formula:

$$B_{c} = \operatorname{Erl}(n, a) := \frac{\frac{a^{n}}{n!}}{\sum_{i=0}^{n} \frac{a^{i}}{i!}}$$

$$n! = n \cdot (n-1) \cdot \dots \cdot 2 \cdot 1, \quad 0! = 1$$

- · Also called:
 - Erlang's B-formula
 - Erlang's blocking formula
 - Erlang's loss formula
 - Erlang's first formula

3. Examples

Teletraffic analysis (1)

- System capacity
 - n = number of channels on the link
- Traffic load
 - a = (offered) traffic intensity
- Quality of service (from the subscribers' point of view)
 - $-\ B_{\rm c}$ = call blocking = probability that an arriving call finds all n channels occupied
- Assume an M/G/n/n loss system:
 - calls arrive according to a **Poisson process** (with rate λ)
 - call holding times are independently and identically distributed according to any distribution with mean h

10

3. Examples

Example

• Assume that there are n = 4 channels on a link and the offered traffic is a = 2.0 erlang. Then the call blocking probability $B_{\rm c}$ is

$$B_{c} = \text{Erl}(4,2) = \frac{\frac{2^{4}}{4!}}{1 + 2 + \frac{2^{2}}{2!} + \frac{2^{3}}{3!} + \frac{2^{4}}{4!}} = \frac{\frac{16}{24}}{1 + 2 + \frac{4}{2} + \frac{8}{6} + \frac{16}{24}} = \frac{2}{21} \approx 9.5\%$$

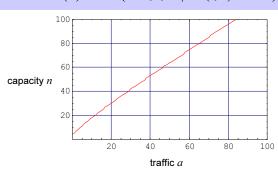
• If the link capacity is raised to n = 6 channels, then B_c reduces to

$$B_{c} = \text{Erl}(6,2) = \frac{\frac{2^{6}}{6!}}{1 + 2 + \frac{2^{2}}{2!} + \frac{2^{3}}{3!} + \frac{2^{4}}{4!} + \frac{2^{5}}{5!} + \frac{2^{6}}{6!}} \approx 1.2\%$$

Capacity vs. traffic

• Given the quality of service requirement that $B_{\rm c} < 1\%$, the required capacity n depends on the traffic intensity a as follows:

$$n(a) = \min\{i = 1, 2, \dots | \text{Erl}(i, a) < 0.01\}$$



13

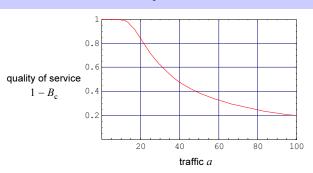
15

3. Examples

Quality of service vs. traffic

• Given the capacity n=20 channels, the required quality of service $1-B_{\rm c}$ depends on the traffic intensity a as follows:

$$1 - B_{c}(a) = 1 - \text{Erl}(20, a)$$



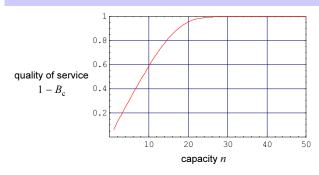
14

3. Examples

Quality of service vs. capacity

• Given the traffic intensity a=15.0 erlang, the required quality of service $1-B_{\rm c}$ depends on the capacity n as follows:

$$1 - B_{c}(n) = 1 - \text{Erl}(n, 15.0)$$



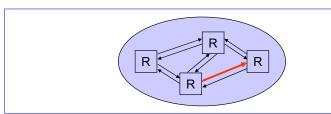
3. Examples

Contents

- · Model for telephone traffic
- · Packet level model for data traffic
- · Flow level model for elastic data traffic
- Flow level model for streaming data traffic

Packet level model for data traffic (1)

- Queueing models are suitable for describing (packet-switched) data traffic at packet level
 - Pioneering work made by many people in 60's and 70's related to ARPANET, in particular L. Kleinrock (http://www.lk.cs.ucla.edu/)
- · Consider a link between two packet routers
 - traffic consists of data packets transmitted along the link

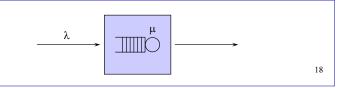


17

3. Examples

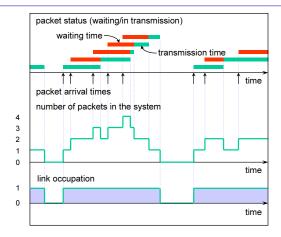
Packet level model for data traffic (2)

- This can be modelled as a pure queueing system with a single server (n = 1) and an infinite buffer (m = ∞)
 - customer = packet
 - λ = packet arrival rate (packets per time unit)
 - L = average packet length (data units)
 - server = link, waiting places = buffer
 - C = link speed (data units per time unit)
 - service time = packet transmission time
 - $1/\mu = L/C$ = average packet transmission time (time units)



3. Examples

Traffic process



3. Examples

Traffic load

- The strength of the offered traffic is described by the traffic load $\boldsymbol{\rho}$
- By definition, the traffic load ρ is the ratio between the arrival rate λ
 and the service rate μ = C/L:

$$\rho = \frac{\lambda}{\mu} = \frac{\lambda L}{C}$$

- The traffic load is a dimensionless quantity
- By Little's formula, it tells the utilization factor of the server, which is the probability that the server is busy

Example

- Consider a link between two packet routers. Assume that,
 - on average, 50,000 new packets arrive in a second,
 - the mean packet length is 1500 bytes, and
 - the link speed is 1 Gbps.
- · Then the traffic load (as well as, the utilization) is

$$\rho = 50,000*1500*8/1,000,000,000 = 0.60 = 60\%$$

21

3. Examples

Teletraffic analysis (1)

- · System capacity
 - C = link speed in kbps
- · Traffic load
 - $-\lambda$ = packet arrival rate in pps (considered here as a variable)
 - -L = average packet length in kbits (assumed here to be constant 1 kbit)
- Quality of service (from the users' point of view)
 - $-P_z$ = probability that a packet has to wait "too long", i.e. longer than a given reference value z (assumed here to be constant z = 0.00001 s = 10 μ s)
- Assume an M/M/1 queueing system:
 - packets arrive according to a **Poisson process** (with rate λ)
 - $-\,$ packet lengths are independent and identically distributed according to the ${\bf exponential}$ distribution with mean L

3. Examples

Delay

- In a queueing system, some packets have to wait before getting served
 - An arriving packet is buffered, if the link is busy upon the arrival
- Delay of a packet consists of
 - the waiting time, which depends on the state of the system upon the arrival, and
 - the transmission time, which depends on the length of the packet and the capacity of the link
- · Example:
 - packet length = 1500 bytes
 - link speed = 1 Gbps
 - transmission time = 1500*8/1,000,000,000 = 0.000012 s = 12 μ s

22

Examples

Teletraffic analysis (2)

 Then the quantitive relation between the three factors (system, traffic, and quality of service) is given by the following formula:

$$\begin{split} P_z &= \mathrm{Wait}(C, \lambda; L, z) := \\ \begin{cases} \frac{\lambda L}{C} \exp(-(\frac{C}{L} - \lambda)z) = \rho \exp(-\mu(1 - \rho)z), & \text{if } \lambda L < C \ (\rho < 1) \\ 1, & \text{if } \lambda L \ge C \ (\rho \ge 1) \end{cases} \end{split}$$

- · Note:
 - The system is stable only in the former case (ρ < 1). Otherwise the number
 of packets in the buffer grows without limits.

Example

- Assume that packets arrive at rate $\lambda=600,000$ pps = 0.6 packets/ μ s and the link speed is C=1.0 Gbps = 1.0 kbit/ μ s.
- · The system is stable since

$$\rho = \frac{\lambda L}{C} = 0.6 < 1$$

• The probability P_z that an arriving packet has to wait too long (i.e. longer than z = 10 μ s) is

$$P_z = \text{Wait}(1.0,0.6;1,10) = 0.6 \exp(-4.0) \approx 1\%$$

25

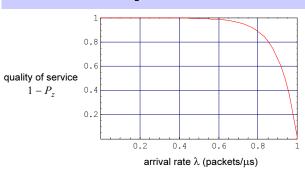
27

3. Examples

Quality of service vs. arrival rate

• Given the link speed C=1.0 Gbps =1.0 kbit/ μ s, the quality of service $1-P_z$ depends on the arrival rate λ as follows:

$$1 - P_z(\lambda) = 1 - \text{Wait}(1.0, \lambda; 1, 10)$$



3. Examples

Capacity vs. arrival rate

• Given the quality of service requirement that $P_z < 1\%$, the required link speed C depends on the arrival rate λ as follows:

$$C(\lambda) = \min\{c > \lambda L \mid \text{Wait}(c, \lambda; 1, 10) < 0.01\}$$

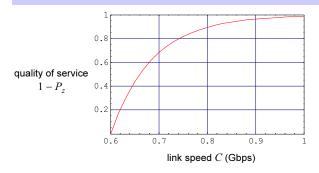
26

3. Examples

Quality of service vs. capacity

• Given the arrival rate $\lambda = 600,000$ pps = 0.6 packets/ μ s, the quality of service $1-P_z$ depends on the link speed C as follows:

$$1 - P_z(R) = 1 - \text{Wait}(C, 0.6; 1, 10)$$



Contents

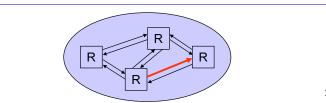
- · Model for telephone traffic
- · Packet level model for data traffic
- · Flow level model for elastic data traffic
- · Flow level model for streaming data traffic

29

3. Examples

Flow level model for elastic data traffic (1)

- Sharing models are suitable for describing elastic data traffic at flow level
 - Elasticity refers to the adaptive sending rate of TCP flows
 - This kind of models have been proposed, e.g., by J. Roberts and his researchers (http://perso.rd.francetelecom.fr/roberts/)
- · Consider a link between two packet routers
 - traffic consists of TCP flows loading the link

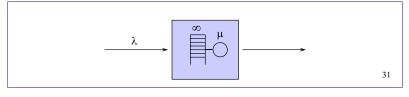


30

3. Examples

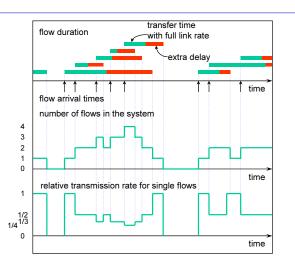
Flow level model for elastic data traffic (2)

- The simplest model is a single server (n = 1) pure sharing system with a fixed total service rate of μ
 - customer = TCP flow = file to be transferred
 - λ = flow arrival rate (flows per time unit)
 - S = average flow size = average file size (data units)
 - server = link
 - C = link speed (data units per time unit)
 - service time = file transfer time with full link speed
 - $1/\mu = S/C$ = average file transfer time with full link speed (time units)



3. Examples

Traffic process



Traffic load

- The strength of the offered traffic is described by the traffic load $\boldsymbol{\rho}$
- By definition, the **traffic load** ρ is the ratio between the arrival rate λ and the service rate $\mu = C/S$:

$$\rho = \frac{\lambda}{\mu} = \frac{\lambda S}{C}$$

- The traffic load is (again) a dimensionless quantity
- It tells the utilization factor of the server

33

3. Examples

Throughput

- In a sharing system the service capacity is shared among all active flows. It follows that all flows get delayed (unless there is only a single active flow)
- By definition, the ratio between the average flow size S and the average total delay D of a flow is called throughput θ,

$$\theta = S/D$$

- Example:
 - -S=1 Mbit
 - D = 5 s
 - $-\theta = S/D = 0.2 \text{ Mbps}$

3. Examples

Example

- Consider a link between two packet routers. Assume that,
 - on average, 50 new flows arrive in a second,
 - average flow size is 1,500,000 bytes, and
 - link speed is 1 Gbps.
- Then the traffic load (as well as, the utilization) is

$$\rho = 50 * 1,500,000 * 8/1,000,000,000 = 0.60 = 60\%$$

34

3. Examples

Teletraffic analysis (1)

- · System capacity
 - C = link speed in Mbps
- · Traffic load
 - $-\lambda$ = flow arrival rate in flows per second (considered here as a variable)
 - S = average flow size in kbits (assumed here to be constant 1 Mbit)
- · Quality of service (from the users' point of view)
 - $-\theta$ = throughput
- Assume an M/G/1-PS sharing system:
 - flows arrive according to a **Poisson process** (with rate λ)
 - $-\,$ flow sizes are independent and identically distributed according to any distribution with mean S

Teletraffic analysis (2)

• Then the quantitive relation between the three factors (system, traffic, and quality of service) is given by the following formula:

$$\theta = \operatorname{Xput}(C, \lambda; S) := \begin{cases} C - \lambda S = C(1 - \rho), & \text{if } \lambda S < C(\rho < 1) \\ 0, & \text{if } \lambda S \ge C(\rho \ge 1) \end{cases}$$

- · Note:
 - The system is stable only in the former case (ρ < 1). Otherwise the number
 of flows as well as the average delay grows without limits. In other words,
 the throughput of a flow goes to zero.

37

39

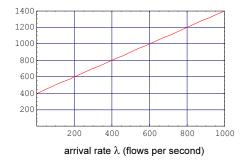
3. Examples

Capacity vs. arrival rate

• Given the quality of service requirement that $\theta \ge 400$ Mbps, the required link speed C depends on the arrival rate λ as follows:

$$C(\lambda) = \min\{c > \lambda S \mid \text{Xput}(c, \lambda; 1) \ge 400\} = \lambda S + 400$$

 $\begin{array}{c} \text{link speed } C \\ \text{(Mbps)} \end{array}$



3. Examples

Example

- Assume that flows arrive at rate λ = 600 flows per second and the link speed is C = 1000 Mbps = 1.0 Gbps.
- · The system is stable since

$$\rho = \frac{\lambda S}{C} = \frac{600}{1000} = 0.6 < 1$$

· Throughput is

$$\theta = \text{Xput}(1000,600;1) = 1000 - 600 = 400 \text{ Mbps} = 0.4 \text{ Gbps}$$

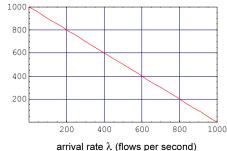
38

3. Examples

Quality of service vs. arrival rate

• Given the link speed C=1000 Mbps, the quality of service θ depends on the arrival rate λ as follows:

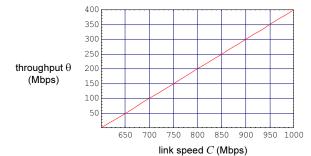
$$\theta(\lambda) = \text{Xput}(1000, \lambda; 1) = 1000 - \lambda S, \quad \lambda < 1000/\text{S}$$



Quality of service vs. capacity

• Given the arrival rate $\lambda = 600$ flows per second, the quality of service θ depends on the link speed C as follows:

$$\theta(C) = \text{Xput}(C,600;1) = C - 600S, \quad C > 600S$$



41

43

3. Examples

Contents

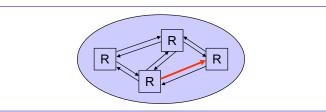
- Model for telephone traffic
- Packet level model for data traffic
- Flow level model for elastic data traffic
- · Flow level model for streaming data traffic

42

3. Examples

Flow level model for streaming CBR traffic (1)

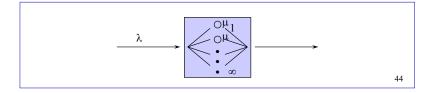
- · Infinite system is suitable for describing streaming CBR traffic at flow level
 - The transmission rate and flow duration of a streaming flow are insensitive to the network state
 - This kind of models applied in 90's to the teletraffic analysis of CBR traffic in ATM networks
- Consider a link between two packet routers
 - traffic consists of UDP flows carrying CBR traffic (like VoIP) and loading the



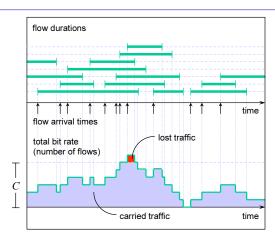
3. Examples

Flow level model for streaming CBR traffic (2)

- Model: an **infinite system** $(n = \infty)$
 - customer = UDP flow = CBR bit stream
 - λ = flow arrival rate (flows per time unit)
 - service time = flow duration
 - $h = 1/\mu$ = average flow duration (time units)
- Bufferless flow level model:
 - when the total transmission rate of the flows exceeds the link capacity, bits are lost (uniformly from all flows)



Traffic process



45

3. Examples

Offered traffic

- Let r denote the bit rate of any flow
- The strength of offered traffic is described by average total bit rate R
 - By Little's formula, the average number of flows is

$$a = \lambda h$$

- This may be called **traffic intensity** (cf. telephone traffic)
- It follows that

$$R = ar = \lambda hr$$

46

3. Examples

Loss ratio

- Let N denote the number of flows in the system
- When the total transmission rate Nr exceeds the link capacity C, bits are lost with rate

$$Nr-C$$

· The average loss rate is thus

$$E[(Nr-C)^{+}] = E[\max\{Nr-C,0\}]$$

- By definition, the **loss ratio** p_{loss} gives the ratio between the traffic lost and the traffic offered:

$$p_{\text{loss}} = \frac{E[(Nr-C)^+]}{E[Nr]} = \frac{1}{ar} E[(Nr-C)^+]$$

3. Examples

Teletraffic analysis (1)

- · System capacity
 - C = nr = link speed in kbps
- · Traffic load
 - -R = ar =offered traffic in kbps
 - r = bit rate of a flow in kbps.
- Quality of service (from the users' point of view)
 - p_{loss} = loss ratio
- Assume an M/G/∞ infinite system:
 - flows arrive according to a **Poisson process** (with rate λ)
 - flow durations are independent and identically distributed according to ${\bf any}$ ${\bf distribution}$ with mean h

Teletraffic analysis (2)

• Then the quantitive relation between the three factors (system, traffic, and the quality of service) is given by the following formula

$$p_{\text{loss}} = \text{LR}(n, a) := \frac{1}{a} \sum_{i=n+1}^{\infty} (i - n) \frac{a^i}{i!} e^{-a}$$

· Example:

- n = 20

-a = 14.36

 $- p_{loss} = 0.01$

49

51

3. Examples

Quality of service vs. traffic

• Given the capacity n=20, the required quality of service $1-p_{\rm loss}$ depends on the traffic intensity a as follows:

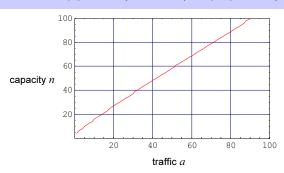
$$1 - p_{loss}(a) = 1 - LR(20, a)$$

3. Examples

Capacity vs. traffic

• Given the quality of service requirement that $p_{\rm loss}$ < 1%, the required capacity n depends on the traffic intensity a as follows:

$$n(a) = \min\{i = 1, 2, \dots | LR(i, a) < 0.01\}$$



50

3. Examples

Quality of service vs. capacity

• Given the traffic intensity a=15.0 erlang, the required quality of service $1-p_{\rm loss}$ depends on the capacity n as follows:

$$1 - p_{loss}(n) = 1 - LR(n, 15.0)$$

