

1. Introduction 1. Introduction Switching modes **Circuit switching (1)** Circuit switching Connection oriented: ٠ В - telephone networks - connections set up end-to-end before information transfer - mobile telephone networks \sim - resources reserved for the - optical networks whole duration of connection Packet switching - if resources are not available, - data networks the call is blocked and lost - two possibilities Information transfer as А ٠ · connection oriented: e.g. X.25, Frame Relay continuous stream · connectionless: e.g. Internet (IP), SS7 (MTP) · Cell switching - ATM networks connection oriented - fast packet switching with fixed length packets (cells) 5 6

B

8

в

1. Introduction	1. Introduction
Teletraffic models	Real system vs. model
 1. Teletraffic models are stochastic (= probabilistic) a. systems themselves are usually deterministic but traffic is typically stochastic a. "you never know, who calls you and when" b. It follows that the variables in these models are random variables, e.g. a. number of ongoing calls b. number of packets in a buffer c. Random variable is described by its distribution, e.g. b. probability that there are <i>n</i> packets in the buffer c. Stochastic process describes the temporal development of a random variable 	 • Typically, the model describes just one part or property of the real system under consideration and even from one point of view. the description is not very accurate but rather approximative • Thus, • caution is needed when conclusions are drawn
1. Introduction Practical goals	1. Introduction Literature
 Network planning dimensioning optimization performance analysis Network management and control efficient operating fault recovery traffic management routing accounting 	 Teletraffic Theory Teletronikk Vol. 91, Nr. 2/3, Special Issue on "Teletraffic", 1995 V. B. Iversen, Teletraffic Engineering Handbook, http://www.tele.dtu.dk/teletraffic/handbook/telehook.pdf J. Roberts, Traffic Theory and the Internet, IEEE Communications Magazine, Jan. 2001, pp. 94-99 http://perso.rd.francetelecom.fr/roberts/Pub/Rob01.pdf Queueing Theory L. Kleinrock, Queueing Systems, Vol. I: Theory, Wiley, 1975 L. Kleinrock, Queueing Systems, Vol. II: Computer Applications, Wiley, 1976 D. Bertsekas and R. Gallager, Data Networks, 2nd ed., Prentice-Hall, 1992 Myron Hlynka's Queueing Theory Page http://www2.uwindsor.ca/~hlynka/queue.html
19	20

1. Introduction

Infinite system

- Infinite number of servers $(n = \infty)$, no waiting places (m = 0)
 - No customers are lost or even have to wait before getting served
- Sometimes,
 - this hypothetical model can be used to get some approximate results for a real system (with finite system capacity)
- · Always,
 - it gives bounds for the performance of a real system (with finite system capacity)
 - it is much easier to analyze than the corresponding finite capacity models

1. Introduction

- Finite number of servers (n < ∞), n service places, finite number of waiting places (0 < m < ∞)
 - If all *n* servers are occupied but there are free waiting places when a customer arrives, it occupies one of the waiting places
 - If all *n* servers and all *m* waiting places are occupied when a customer arrives, it is not served at all but lost
 - Some customers are lost and some customers have to wait before getting served

1. Introduction

Pure queueing system

- Finite number of servers (n < ∞), n service places, infinite number of waiting places (m = ∞)
 - If all *n* servers are occupied when a customer arrives, it occupies one of the waiting places
 - No customers are lost but some of them have to wait before getting served
- · From the customer's point of view, it is interesting to know e.g.
 - what is the probability that it has to wait "too long"?

1. Introduction

Pure sharing system

- Finite number of servers (n < ∞), infinite number of service places (n + m = ∞), no waiting places
 - If there are at most *n* customers in the system (*x* ≤ *n*), each customer has its own server. Otherwise (*x* > *n*), the total service rate (*n*µ) is shared fairly among all customers.
 - Thus, the rate at which a customer is served equals $\min{\{\mu, n\mu/x\}}$
 - No customers are lost, and no one needs to wait before the service.
 - But the delay is the greater, the more there are customers in the system.
 Thus, delay is an interesing measure from the customer's point of view.

