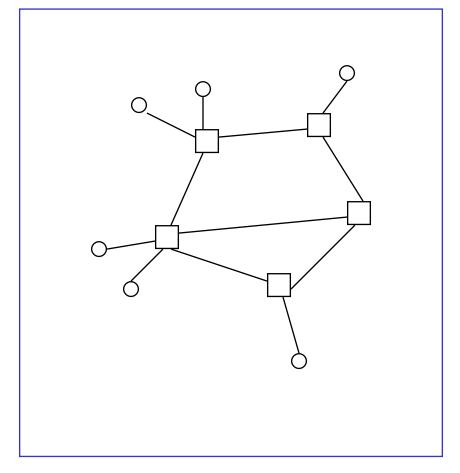


Contents

- Telecommunication networks and switching modes
- Purpose of Teletraffic Theory
- Teletraffic models
- Little's formula

Telecommunication network

- A simple model of a telecommunication network consists of
 - nodes
 - terminals
- \circ
- network nodes
- links between nodes
- Access network
 - connects the terminals to the network nodes
- Trunk network
 - connects the network nodes to each other

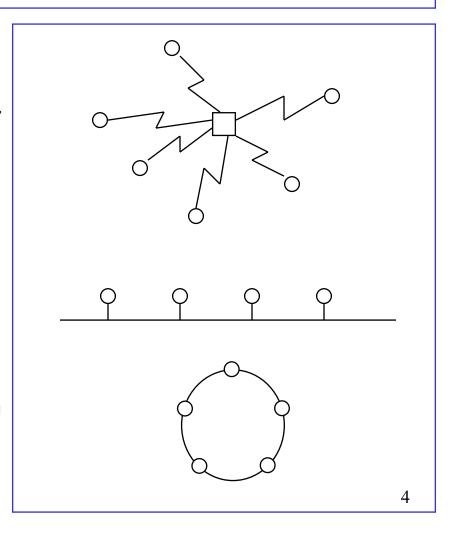


Shared medium as an access network

- In the previous model,
 - connections between terminals and network nodes are point-topoint type (\$\Rightarrow\$ no resource sharing within the access netw.)
- In some cases, such as
 - mobile telephone network
 - local area network (LAN) connecting computers

the access network consists of **shared medium**:

- users have to compete for the resources of this shared medium
- multiple access (MA) techniques are needed



Switching modes

Circuit switching

- telephone networks
- mobile telephone networks
- optical networks

Packet switching

- data networks
- two possibilities
 - connection oriented: e.g. X.25, Frame Relay
 - connectionless: e.g. Internet (IP), SS7 (MTP)

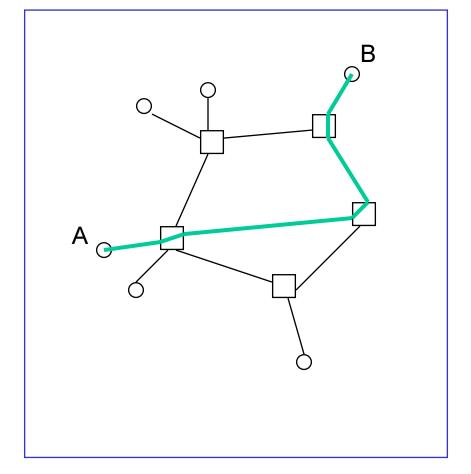
Cell switching

- ATM networks
- connection oriented
- fast packet switching with fixed length packets (cells)

Circuit switching (1)

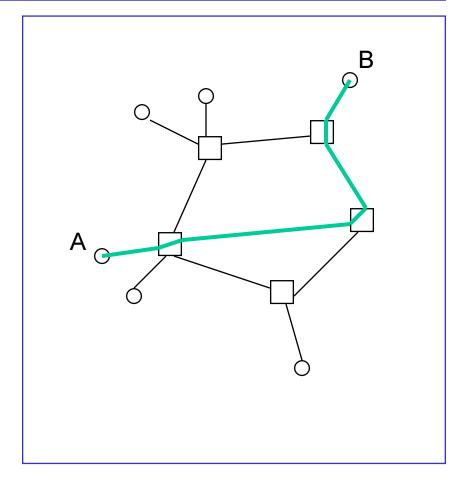
Connection oriented:

- connections set up end-to-end before information transfer
- resources reserved for the whole duration of connection
- if resources are not available, the call is blocked and lost
- Information transfer as continuous stream



Circuit switching (2)

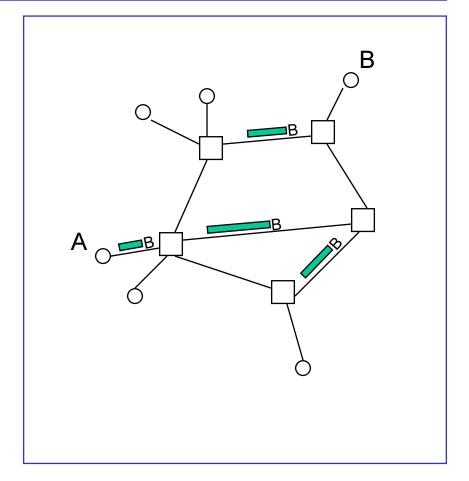
- Before information transfer
 - Set-up delay
- During information transfer
 - signal propagation delay
 - no overhead
 - no extra delays
- Example: telephone network



Connectionless packet switching (1)

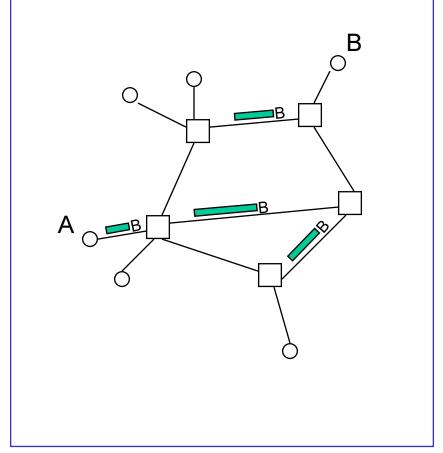
Connectionless:

- no connection set-up
- no resource reservation
- no blocking
- Information transfer as discrete packets
 - varying length
 - global address (of the destination)



Connectionless packet switching (2)

- Before information transfer
 - no delays
- During information transfer
 - overhead (header bytes)
 - packet processing delays
 - queueing delays (since packets compete for joint resources)
 - transmission delays (due to finite capacity links)
 - signal propagation delay
 - packet losses (due to finite buffers)
- Example: Internet (IP-layer)

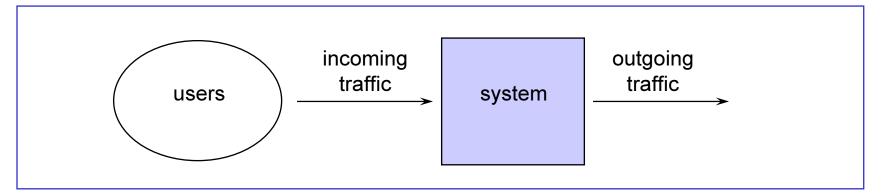


Contents

- Telecommunication networks and switching modes
- Purpose of Teletraffic Theory
- Teletraffic models
- Little's formula

Traffic point of view

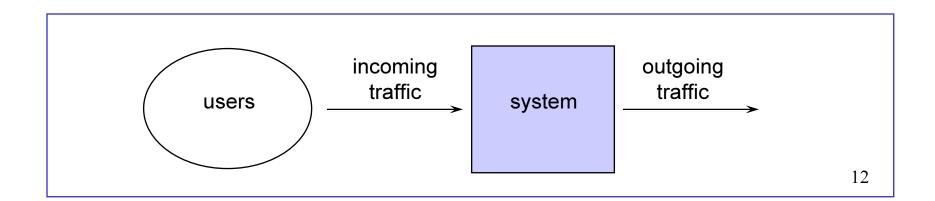
Telecommunication system from the traffic point of view:



- Ideas:
 - the system serves the incoming traffic
 - the traffic is generated by the users of the system

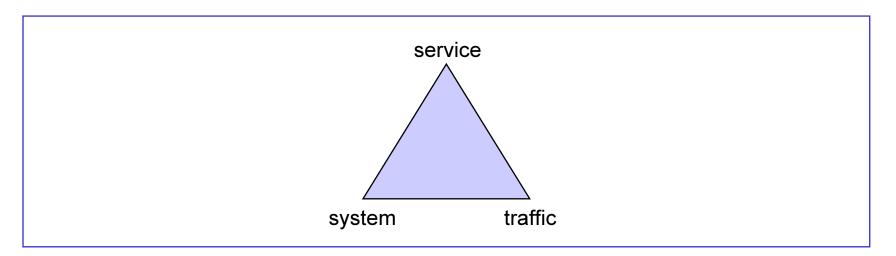
Interesting questions

- Given the system and incoming traffic, what is the quality of service experienced by the user?
- Given the incoming traffic and required quality of service, how should the system be dimensioned?
- Given the system and required quality of service, what is the maximum traffic load?



General purpose (1)

- Determine relationships between the following three factors:
 - quality of service
 - traffic load
 - system capacity

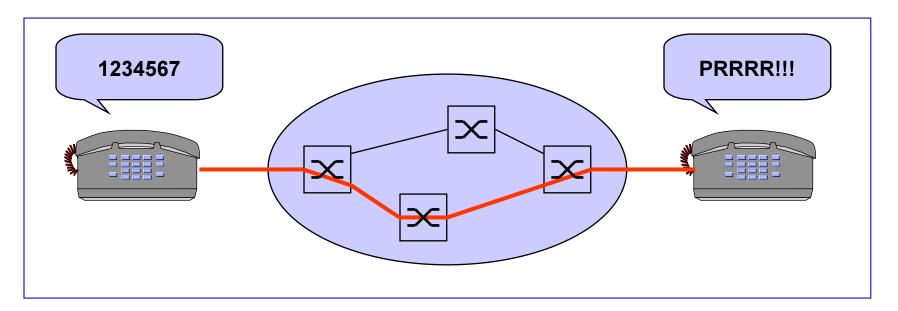


General purpose (2)

- System can be
 - a single device (e.g. link between two telephone exchanges, link in an IP network, packet processor in a data network, router's transmission buffer, or statistical multiplexer in an ATM network)
 - the whole network (e.g. telephone or data network) or some part of it
- Traffic consists of
 - bits, packets, bursts, flows, connections, calls, ...
 - depending on the system and time scale considered
- Quality of service can be described from the point of view of
 - the customer (e.g. call blocking, packet loss, packet delay, or throughput)
 - the system, in which case we use the term **performance** (e.g. processor or link utilization, or maximum network load)

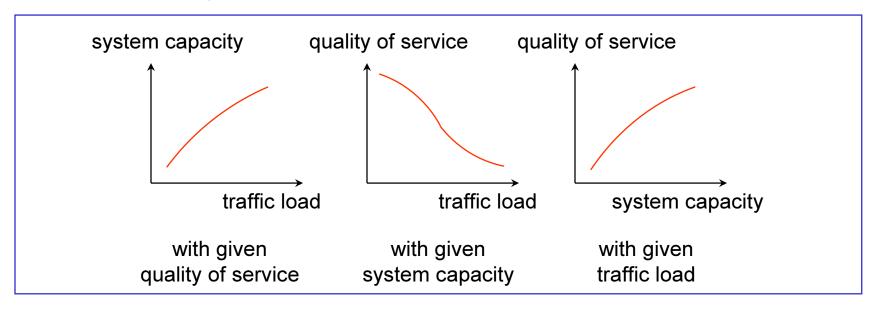
Example

- Telephone call
 - traffic = telephone calls by everybody
 - system = telephone network
 - quality of service = probability that the phone rings at the destination



Relationships between the three factors

• Qualitatively, the relationships are as follows:



 To describe the relationships quantitatively, mathematical models are needed

Teletraffic models

- Teletraffic models are stochastic (= probabilistic)
 - systems themselves are usually deterministic but traffic is typically stochastic
 - "you never know, who calls you and when"
- It follows that the variables in these models are random variables, e.g.
 - number of ongoing calls
 - number of packets in a buffer
- Random variable is described by its distribution, e.g.
 - probability that there are n ongoing calls
 - probability that there are n packets in the buffer
- Stochastic process describes the temporal development of a random variable

Real system vs. model

- Typically,
 - the model describes just one part or property of the real system under consideration and even from one point of view
 - the description is not very accurate but rather approximative
- Thus,
 - caution is needed when conclusions are drawn

Practical goals

- Network planning
 - dimensioning
 - optimization
 - performance analysis
- Network management and control
 - efficient operating
 - fault recovery
 - traffic management
 - routing
 - accounting

Literature

Teletraffic Theory

- Teletronikk Vol. 91, Nr. 2/3, Special Issue on "Teletraffic", 1995
- V. B. Iversen, Teletraffic Engineering Handbook,
 http://www.tele.dtu.dk/teletraffic/handbook/telehook.pdf
- J. Roberts, Traffic Theory and the Internet,
 IEEE Communications Magazine, Jan. 2001, pp. 94-99
 http://perso.rd.francetelecom.fr/roberts/Pub/Rob01.pdf

Queueing Theory

- L. Kleinrock, Queueing Systems, Vol. I: Theory, Wiley, 1975
- L. Kleinrock, Queueing Systems, Vol. II: Computer Applications, Wiley, 1976
- D. Bertsekas and R. Gallager, *Data Networks*, 2nd ed., Prentice-Hall, 1992
- Myron Hlynka's Queueing Theory Page http://www2.uwindsor.ca/~hlynka/queue.html

Contents

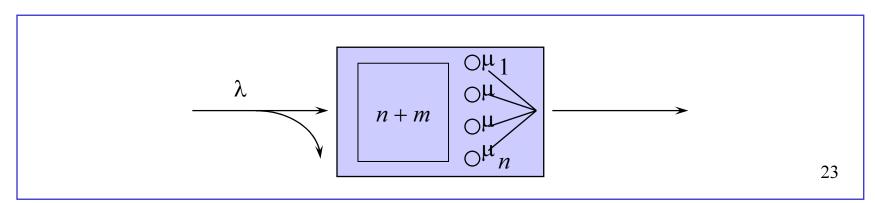
- Telecommunication networks and switching modes
- Purpose of Teletraffic Theory
- Teletraffic models
- Little's formula

Teletraffic model types

- Three types of system models:
 - loss systems
 - queueing systems
 - sharing systems
- Next we will present simple teletraffic models
 - describing a single resource
- These models can be combined to create models for whole telecommunication networks
 - loss networks
 - queueing networks
 - sharing networks

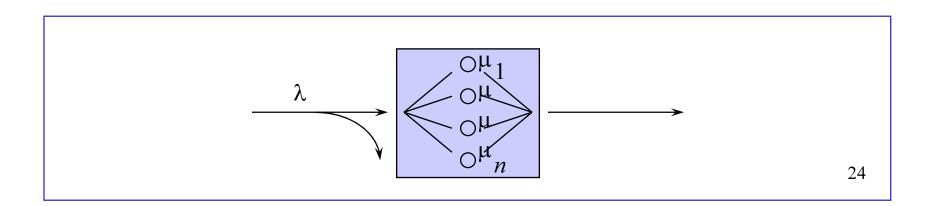
Simple teletraffic model

- Customers arrive at rate λ (customers per time unit)
 - $-1/\lambda$ = average inter-arrival time
- Customers are served by n parallel servers
- When busy, a server serves at rate μ (customers per time unit)
 - $-1/\mu$ = average service time of a customer
- There are n + m customer places in the system
 - at least n service places and at most m waiting places
- It is assumed that blocked customers (arriving in a full system) are lost



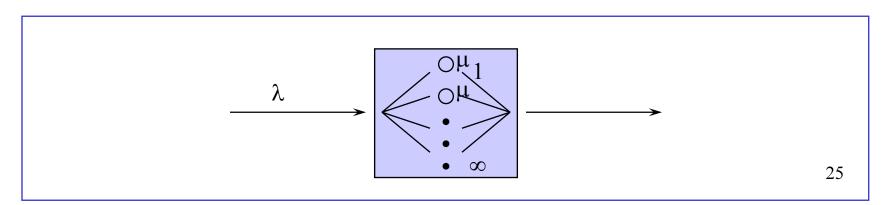
Pure loss system

- Finite number of servers $(n < \infty)$, n service places, no waiting places (m = 0)
 - If the system is full (with all n servers occupied) when a customer arrives,
 it is not served at all but lost
 - Some customers may be lost
- From the customer's point of view, it is interesting to know e.g.
 - What is the probability that the system is full when it arrives?



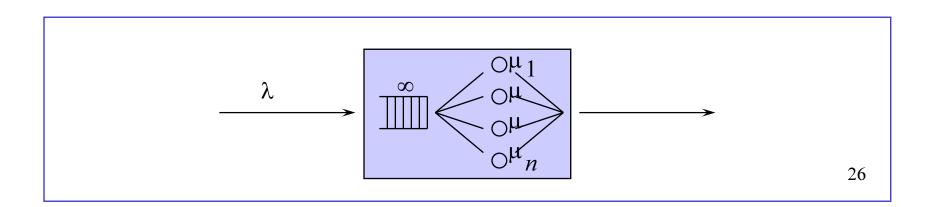
Infinite system

- Infinite number of servers $(n = \infty)$, no waiting places (m = 0)
 - No customers are lost or even have to wait before getting served
- Sometimes,
 - this hypothetical model can be used to get some approximate results for a real system (with finite system capacity)
- Always,
 - it gives bounds for the performance of a real system (with finite system capacity)
 - it is much easier to analyze than the corresponding finite capacity models



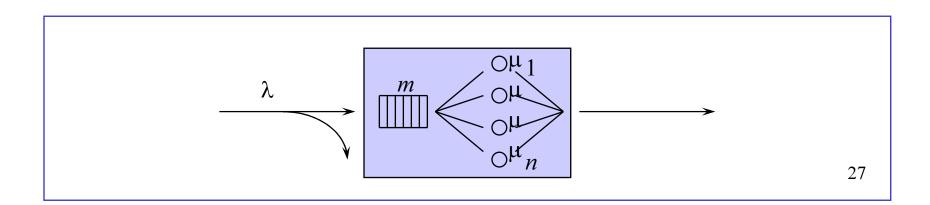
Pure queueing system

- Finite number of servers $(n < \infty)$, n service places, infinite number of waiting places $(m = \infty)$
 - If all n servers are occupied when a customer arrives, it occupies one of the waiting places
 - No customers are lost but some of them have to wait before getting served
- From the customer's point of view, it is interesting to know e.g.
 - what is the probability that it has to wait "too long"?



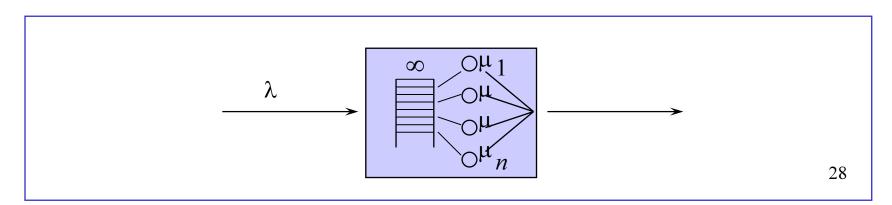
Lossy queueing system

- Finite number of servers $(n < \infty)$, n service places, finite number of waiting places $(0 < m < \infty)$
 - If all n servers are occupied but there are free waiting places when a customer arrives, it occupies one of the waiting places
 - If all n servers and all m waiting places are occupied when a customer arrives, it is not served at all but lost
 - Some customers are lost and some customers have to wait before getting served



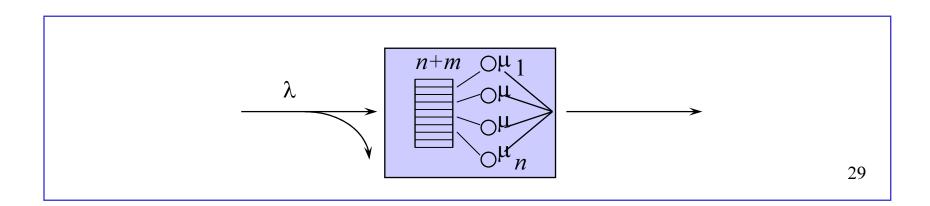
Pure sharing system

- Finite number of servers $(n < \infty)$, infinite number of service places $(n + m = \infty)$, no waiting places
 - If there are at most n customers in the system $(x \le n)$, each customer has its own server. Otherwise (x > n), the total service rate $(n\mu)$ is shared fairly among all customers.
 - Thus, the rate at which a customer is served equals $\min\{\mu, n\mu/x\}$
 - No customers are lost, and no one needs to wait before the service.
 - But the delay is the greater, the more there are customers in the system.
 Thus, delay is an interesing measure from the customer's point of view.



Lossy sharing system

- Finite number of servers $(n < \infty)$, finite number of service places $(n + m < \infty)$, no waiting places
 - If there are at most n customers in the system $(x \le n)$, each customer has its own server. Otherwise (x > n), the total service rate $(n\mu)$ is shared fairly among all customers.
 - Thus, the rate at which a customer is served equals $\min\{\mu, n\mu/x\}$
 - Some customers are lost, but no one needs to wait before the service.



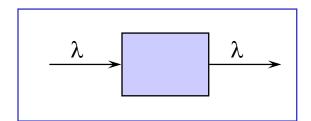
Contents

- Telecommunication networks and switching modes
- Purpose of Teletraffic Theory
- Teletraffic models
- Little's formula

Little's formula

- Consider a system where
 - new customers arrive at rate λ
- Assume stability:
 - Every now and then, the system is empty
- Consequence:
 - Customers depart from the system at rate λ
- Let
 - \overline{N} = average number of customers in the system
 - \overline{T} = average time a customer spends in the system = average delay
- Little's formula:

$$\overline{N} = \lambda \overline{T}$$



Proof (1)

- Let
 - N(t) = the number of customers in the system at time t
 - -A(t) = the number of customers arrived in the system by time t
 - B(t) = the number of customers departed from the system by time t
 - T_i = the time customer i spends in the system = its delay
- As $t \to \infty$,

$$\frac{1}{t} \int_0^t N(s) ds \to \overline{N}, \quad \frac{1}{A(t)} \sum_{i=1}^{A(t)} T_i \to \overline{T}, \quad \frac{1}{B(t)} \sum_{i=1}^{B(t)} T_i \to \overline{T} \quad (1)$$

In addition (due to the stability assumption),

$$\frac{1}{t}A(t) \to \lambda, \quad \frac{1}{t}B(t) \to \lambda$$
 (2)

Proof (2)

- We may assume that
 - the system is empty at time t = 0,
 - the customers depart from the system in their arrival order (FIFO)
- Then (see the figure in the following slide)

$$\sum_{i=1}^{B(t)} T_i \le \int_0^t N(s) ds \le \sum_{i=1}^{A(t)} T_i$$

Thus,

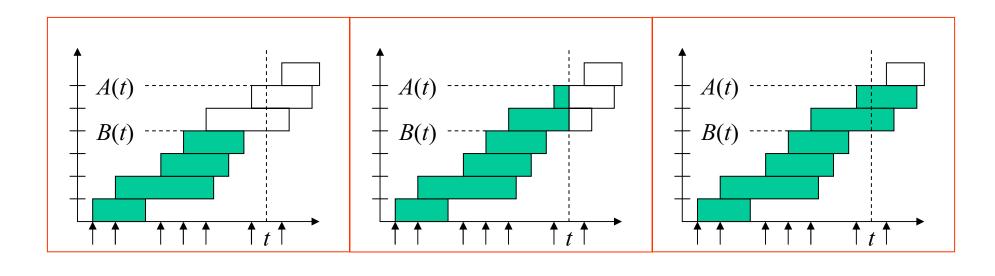
$$\frac{B(t)}{t} \frac{1}{B(t)} \sum_{i=1}^{B(t)} T_i \le \frac{1}{t} \int_0^t N(s) ds \le \frac{A(t)}{t} \frac{1}{A(t)} \sum_{i=1}^{A(t)} T_i$$

• As $t \to \infty$, we have, by (1) and (2),

$$\lambda \overline{T} \le \overline{N} \le \lambda \overline{T}$$

Q.E.D.

Proof (3)



$$\sum_{i=1}^{B(t)} T_i$$

$$\int_0^t N(s)ds$$

$$\sum_{i=1}^{A(t)} T_i$$

THE END

