HELSINKI UNIVERSITY OF TECHNOLOGY

Networking Laboratory
S-38.145 Introduction to Teletraffic Theory, Spring 2005
Problems 2 and 4 are homework exercises. Mark the problems you have solved in the beginning of the exercise class.

1. Demo

Consider the following simple circuit switched trunk network. There are three nodes connected in a tandem by two links: a - $\mathrm{b}-\mathrm{c}$. Each link has capacity of 2 channels. In addition, there are three traffic classes:

- Class 1 uses link a - b
- Class 2 uses link b-c
- Class 3 uses both link a - b and link b-c

Determine the state space of this system. Furthermore, determine the blocking states for each class separately.
2. Homework exercise (2 points)

Consider still the circuit switched trunk network defined in the previous problem. Assume that, for each class r, new calls arrive according to a Poisson process at rate λ_{r}. Let $\lambda_{1}=\lambda_{2}=1 / 3$ calls per minute and $\lambda_{3}=2 / 3$ calls per minute. Call holding times (for all classes) are assumed to be independently and identically distributed with mean $h=3 \mathrm{~min}$. Compute the end-to-end blocking probabilities for each class using both the exact formula and the approximative Product Bound method.

3. Demo

Consider a connectionless packet switched trunk network with three nodes connected to each other as a triangle. Each node pair is connected with two one-way links (one in each direction) of capacity 155 Mbps . The following five routes are used in this network:

- Route 1: $\mathrm{a} \rightarrow \mathrm{b}$
- Route 2: $\mathrm{a} \rightarrow \mathrm{c} \rightarrow \mathrm{b}$
- Route 3: a $\rightarrow \mathrm{c}$
- Route 4: c \rightarrow b
- Route 5: $\mathrm{b} \rightarrow \mathrm{a}$

For each route, new packets arrive according to an independent Poisson process with intensities $\lambda(1)=20, \lambda(2)=10, \lambda(3)=\lambda(4)=\lambda(5)=5$ packets per ms. The packet lengths are independent and exponentially distributed with mean 400 bytes. Draw a picture describing this queueing network model. Compute the traffic loads for each link j. In addition, compute the average end-to-end delays for each route r.

4. Homework exercise (1 point)

Consider the queueing network model defined in the previous problem. Assume now that the connection between nodes a and b breaks down so that the packets following route $1(\mathrm{a} \rightarrow \mathrm{b})$ are rerouted to route $2(\mathrm{a} \rightarrow \mathrm{c} \rightarrow \mathrm{b})$ and the packets following route $5(\mathrm{~b}$ $\rightarrow \mathrm{a})$ are rerouted to a new route $6(\mathrm{~b} \rightarrow \mathrm{c} \rightarrow \mathrm{a})$. Compute the new average end-to-end delays for each route r.

