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CONTINUOUS DISTRIBUTIONS
Laplace transform (Laplace-Stieltjes transform)

Definition

The Laplace transform of a non-negative random variable X > 0 with the probability density
function f(z) is defined as

fi(s) = /OOO e S f(t)dt = Ele*¥] | = /0 e *dF(t) also denoted as Lx(s)

e Mathematically it is the Laplace transform of the pdf function.

e [n dealing with continuous random variables the Laplace transform has the same role as
the generating function has in the case of discrete random variables.

— if X is a discrete integer-valued (> 0) r.v., then f*(s) = G(e™*)
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Laplace transform of a sum
Let X and Y be independent random variables with L-transforms f%(s) and fi(s).

[iiv(s) = Ele¥+)]

= Ele **|E[e™Y]  (independence)
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Calculating moments with the aid of Laplace transform

By derivation one sees

F(s) = S Ble] = B-Xe ¥
Similarly, the n'" derivative is
dn
F(s) = @E[e_SX] = B[(—X)"e™]

Evaluating these at s = 0 one gets

EX] = —f*(0)
BX? = +f*(0)

EX") = (=1)"f™(0)
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Laplace transform of a random sum
Consider the random sum
Y —= Xl _|_ . e _|_ XN

where the X; are .7.d. with the common L-transform f%(s) and
N >0 is a integer-valued r.v. with the generating function Gy(z).

I
&3

fy(s) = Ele™]
= E[E [ YN ]] (outer expectation with respect to variations of IV)
= E[E [ —s(Xit+An) \N]] (in the inner expectation N is fixed)
= E[E[e~*XV]...E[e=**M)]]  (independence)
(fx

= gn(fx(s)) (by the definition E[z"] = Gn(2))
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Laplace transform and the method of collective marks
We give for the Laplace transform
f*(s)=E[e**], X >0, the following

Interpretation: Think of X as representing the length of an interval. Let this interval be subject

to a Poissonian marking process with intensity s. Then the Laplace transform f*(s) is the
probability that there are no marks in the interval.

P{X has no marks} = E[P{X has no marks| X }| (total probability)
= E[P{the number of events in the interval X is 0| X }]
= Ele™] = f(s)
intensiteetti s (sX)" _sX

P{there are n events in the interval X | X'} =

N P{the number of events in the interval X is 0| X} = e
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Method of collective marks (continued)

Example: Laplace transform of a random sum
Y=Xi+---4+ Xy, where
X1~ Xy~ -~ Xy, common L-transform f*(s)

N is a r.v. with generating function Gy (z)

intensiteetti s

fi(s) = P{none of the subintervals of Y is marked} l l

= Gl /x(s) )
probability that a
single subinterval

has no marks

probability that none of
the subintervals is marked
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Uniform distribution X ~ U(a,b)

The pdf of X is constant in the interval (a, b):
{ P a<x<b

fla)=4 "

0 elsewhere

i.e. the value X is drawn randomly in the interval (a, b).

f(x) F(x)

| |
a b i a lb g
E[X] = /_t;oxf(x)dx:a;rb
VIX) = [ (o= ) s = O3
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Uniform distribution (continued)
Let Uy, ..., U, be independent uniformly distributed random variables, U; ~ U(0, 1).

e The number of variables which are < z (0 <z < 1)) is ~ Bin(n, x)
— the event {U; < x} defines a Bernoulli trial where the probability of success is
o Let Upy, ..., Uy, be the ordered sequence of the values.

Define further Uy = 0 and Uy, 41) = 1.
It can be shown that all the intervals are identically distributed and

— for the first interval Uy —U o) = Uy) the result is obvious because Uy = min(U7, . ..
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Exponential distribution X ~ Exp(\)

(Note that sometimes the shown parameter is 1/, i.e. the mean of the distribution)

X is a non-negative continuous random variable with the cdf

F(x)

l—e ™M >0 |

F(z) = {

0 xr <0

and pdf

B e ™™ x>0 '
f<x)_{o z <0

Example: interarrival time of calls; holding time of call
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Laplace transform and moments of exponential distribution
The Laplace transform of a random variable with the distribution Exp(\) is

fi(s) = /OOO e Ne Mdt =

A+S
With the aid of this one can calculate the moments:
o x/ o A 1
E[X] B _f <O) o WSZO_ A
21 * . 2\ 2
BIXT = +/70) = 65l = ®

VIX] = EX)-E[X]? = &

10



J. Virtamo 38.3143 Queueing Theory / Continuous Distributions 11
The memoryless property of exponential distribution

Assume that X ~ Exp(A) represents e.g. the duration of a call.

What is the probability that the call will last at least time x more given that it has already
lasted the time ¢:

P{X >t+z, X >t}
P{X >t}
P{X >t+x}
P{X >t}
o~ \t+7)

P{X>t+zx|X >t} =

P{X>t+z|X >t} =P{X >z}

e The distribution of the remaining duration of the call
does not at all depend on the time the call has already
lasted

e Has the same Exp(A) distribution as the total duration
of the call.
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FExample of the use of the memoryless property

A queueing system has two servers. The service times are

assumed to be exponentially distributed (with the same pa-
rameter). Upon arrival of a customer (¢) both servers are
occupied (Xx) but there are no other waiting customers.

The question: what is the probability that the customer (¢) will be the last to depart from
the system?

The next event in the system is that either of the customers

(x) being served departs and the customer enters (¢) the
freed server.

By the memoryless property, from that point on the (remaining) service times of both cus-
tomers (¢) and (x) are identically (exponentially) distributed.

The situation is completely symmetric and consequently the probability that the customer
(¢) is the last one to depart is 1/2.



J. Virtamo 38.3143 Queueing Theory / Continuous Distributions
The ending probability of an exponentially distributed interval

Assume that a call with Exp(A) distributed duration has lasted the time ¢.
What is the probability that it will end in an infinitesimal interval of length A7

P{X <t+h|X >t} = P{X <h} (memoryless)

= 1 —¢e
— 1—(1—)\h+%()\h)2—---)
= M +o(h)

The ending probability per time unit = A (constant!)

13
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The minimum and maximum of exponentially distributed random variables
Let X1 ~ -+~ X, ~ Exp()) (4.7.d.)

The tail distribution of the minimum is

P{min(Xy,..., X)) >z} = P{X5 >z} ---P{X, >z} (independence)
— (6—)\x)n — e—n)\x

The minimum obeys the distribution Exp(nA\).

n parallel processes each of which ends with
The ending intensity of the minimum = nA pat bt wihi nas wi

intensity A independent of the others

The cdf of the maximum is X4
P{max(Xy,. .., X,) <z} = (1 — e )" R X,
The expectation can be deduced by inspecting the figure | X X4
1 1 1 NI
Emax(Xy,..., X,)] = —+ b NS SN W S S
nA - (n—1)A A ~Exp(n)) ~Exp())
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Erlang distribution X ~ Erlang(n,A)  Also denoted Erlang-n()\).

X is the sum of n independent random variables with the distribution Exp(\)
X=X1+---+X, X; ~ Exp(A\)  (i.i.d.)
The Laplace transform is
* >\ n
fis) = (=)

A+s
By inverse transform (or by recursively convoluting the density function) one obtains the pdf
of the sum X
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Erlang distribution (continued): gamma distribution

The formula for the pdf of the Erlang distribution can be generalized, from the integer param-
eter m, to arbitrary real numbers by replacing the factorial (n — 1)! by the gamma function
['(n):

flz) = Ae M Gamma(p, A) distribution

Gamma function I'(p) is defined by

By partial integration it is easy to see that when
Lp) = [ e “u’'du Y P 5 Y

0 p is an integer then, indeed, I'(p) = (p — 1)!
05, (n=1 The expectation and variance are n times those
04 \ of the Exp(A) distribution:
0.3} n=3
BX] =3 VIX]=
0.1}
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Erlang distribution (continued)
~Erlang(2,))

Example. The system consists of two servers. Customers \
arrive with Exp(A) distributed interarrival times. Cus-
tomers are alternately sent to servers 1 and 2. -
The interarrival time distribution of customers arriving at ~Exp(h)
a given server is Erlang(2, A).
Proposition. Let Ny, the num-  Proof.
ber of events in an ipterval .of Fr (t) = P{T, <t} =P{N, >n}
length ¢, obey the Poisson dis- |

. . o0 00 ()
tribution: = Y PN, =i} =3 ( ") o

N; ~ Poisson(At) = i=n b

Then the time 7}, from an ar- o g\ (At) 1 o ()

" _ 4 _ At Y
bitrary event to the n'" event fr = &) T En il Ac
thereafter obeys the distribu- o M) s (A,
tion Erlang(n, A). > - Ae M — N 2

12 3 n (At N M
\l I (n—1)!
0 t T,
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Normal distribution X ~ N(u, o?)

The pdf of a normally distributed random variable X with parameters u ja o

Parameters p and o? are the

L2 /o
flz) = 5 © e=m)y/o expectation and variance of the

distribution

Proposition: If X ~ N(u, 0?), then Y = aX + 3 ~ N(au + 8, a?c?).

Proof:
Fy(y) = P{Y <y} = P{X <%0} = Fy(F)

«

_ /(y_ﬁ)/a 1 6_%(x_lu)2/o.2dx Y — ax & ﬂ

—00 2ro

Sy g s IR

ooV 2m(ao)

X —p
)

Seuraus: 7 = ~N(0,1) (a=1/o, B=—u/o)

Denote the pdf of a N(0,1) random variable by ®(x). Then

Fy(z) = P{X < 2} = P{Z < 51} = &(4)

1S

18
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Multivariate Gaussian (normal) distribution

Let X1,..., X, be a set of Gaussian (i.e. normally distributed) random variables with expec-
tations p1, ..., i, and covariance matrix
o oty
I' = : T : O-z'2j = COV[XZ', X]] <0222 = V[XZ])
2 2
Ont """ Onn

Denote X = (X1, ..., X)L
The probability density function of the random vector X is

Fx) = oo T e

LR

where || is the determinant of the covariance matrix.

By a change of variables one sees easily that the pdf of the random vector Z = T'™/2(X — )
is (2m) "% exp(—3z'z) = ome A2 \2we 2,

Thus the components of the vector Z are independent N(0,1) distributed random variables.

Conversely, | X = p + ''/27 | by means of which one can generate values for X in simulations.




