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QUEUEING NETWORKS

A network consisting of several interconnected queues

• Network of queues

Examples

• Customers go form one queue to another in post office, bank, supermarket etc

• Data packets traverse a network moving from a queue in a router to the queue in another

router

History

• Burke’s theorem, Burke (1957), Reich (1957)

• Jackson (1957, 1963): open queueing networks, product form solution

• Gordon and Newell (1967): closed queueing networks

• Baskett, Chandy, Muntz, Palacios (1975): generalizations of the types of queues

• Reiser and Lavenberg (1980, 1982): mean value analysis, MVA
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Jackson’s queueing network (open queueing network)

Jackson’s open queueing network consists of M nodes (queues) with the following assumptions:

• Node i is a FIFO queue

– unlimited number of waiting places (infinite queue)

• Service time in the queue obeys the distribution Exp(µi)

– in each queue, the service time of the customer is drawn independent of the service

times in other queues

– note: in a packet network the sending time of a packet, in reality, is the same in all

queues (or differs by a constant factor, the inverse of the line speed)

– this dependence, however, does not markedly affect the behaviour of the system (so

called Kleinrock’s independence assumption)

• Upon departure from queue i, the customer chooses the next queue j randomly with the

probability qi,j or exits the network with the probability qi,d (probabilistic routing)

– the model can be extended to cover the case of predetermined routes (route pinning)

• The network is open to arrivals from outside of the network (source)

– from the source s customers arrive as a Poisson stream with intensity λ

– fraction qs,i of them enter queue i (intensity λqs,i)
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Node i in Jackson’s network



s = source, external

d = destination, sink

Ni = number of customers in queue i

λi

λqs, i λ q di i,
λ q1, i1 λ q 1i i,

λ qM, iM λ q Mi i,

λi
µi

Exp( )µi

Ni

. .

. .

. .

Without complications one could assume state dependent service rates µi = µi(Ni). This

could describe e.g. multiserver nodes. To simplify the notation, we assume in the sequel a

constant sevice rate µi.

Jackson’s network

The opnenness of the

network requires that

from each node there

is at leas one path (6=
0) to the sink d, i.e.

the probability that a

customer entering the

network will ultimately

exit the network is 1.
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Conservation of the flows

Denote λi = average customer flow through node i.

• Although the external arrival streams to the nodes are Poissonian, there is no guarantee

that the flows inside the network were also Poissonian. In general, they are not.

– except when there are no loops, i.e. a customer never re-enters a previously visited

queue; then the Poisson property follows from Burke’s theorem.

Stream λi is composed of the direct stream from the source and the split output streams from

other nodes:

λi = λqs,i +
M∑
j=1

λjqj,i i = 1, . . . , M
The conservation laws constitute a set of li-

near equations, from which the λi can be sol-

ved.

A similar equation holds for the destination d. Since the total

stream exiting the network must equal the stream entering the

network, we have (qs,d = 0):
λ =

M∑
j=1

λjqj,d

Example

λ
λ1

µ1

q

1-q

λ1 = λ + qλ1

⇒ λ1 =
λ

1− q

Note. λ1 is not Poissonian although λ is.
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Jackson’s theorem

• The number of customers Ni in different nodes, i = 1, . . . , M , are independent.

• Queue i behaves as if the arrival stream λi were Poissonian.

State vector

The network state is determined by the vector N = (N1, . . . , NM).

Its possible values are denoted by n = (n1, . . . , nM).

The network is in state n when N = n, i.e. N1 = n1, . . . , NM = nM .

State probability

p(n) = P{N = n}
Define p(n) = 0,

if some ni < 0

Jackson’s theorem

p(n) = p1(n1) · · · pM(nM) =
M∏
i=1

pi(ni) where pi(ni) = (1− ρi)ρ
ni
i ρi = λi/µi

• The network behaves as if it were composed of idependent M/M/1 queues.

• The state probability is of the product form ⇔ independence.

• If there are many customers in one of the nodes, this does not imply anything about the

number of customers in other nodes.

If the service rate is state

dependent µi(ni), then
pi(ni) = pi(0)

λni
i∏ni

j=1 µi(j)
where pi(0) is determined by

the normalization condition.
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Proof of Jackson’s theorem

Denote ei = (0, . . . , 0, 1︸︷︷︸
component i

, 0, . . . , 0).

Then, for instance

p(n− ei) = p(n1, . . . , ni−1, ni − 1, ni+1, . . . , nM)

Write the globabl balance condition for state n

(one equation for each possible state n, ni ≥ 0 ∀i):
λ p(n) +

M∑
i=1

µi1ni>0 p(n) = λ
M∑
i=1

qs,i p(n− ei)

+
M∑
i=1

qi,d µi p(n + ei)

+
M∑
i=1

M∑
j=1

qj,i µj p(n + ej − ei)

where the lhs represents the probability flow out

of state n (in state n, any arrival or any departure

causes a transition to another state) ant the rhs

the flow to state n (cf. the transition diagram).

n1

n2

jonoon 2 saapuu asiakas ulkopuolelta

jonosta 2 poistuu asiakas ulkopuolelle

jonoon 1 saapuu asiakas ulkopuolelta

jonosta 1 poistuu asiakas ulkopuolelle

asiakas siirtyy jonosta 2 jonoon 1

asiakas siirtyy jonosta 1 jonoon 2

Note. One could again allow state dependent service rates µi = µi(ni).
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Proof of Jackson’s theorem (continued)

Rewrite the factor λqs,i in the first term on the rhs by means of the flow conservation equation:

λqs,i = λi −
M∑
i=1

λjqj,i. The equation becomes

λ p(n) +
M∑
i=1

µi1ni>0 p(n) =
M∑
i=1

λi p(n− ei)−
M∑
i=1

M∑
j=1

λj qj,i p(n− ei)

+
M∑
i=1

qi,d µi p(n + ei)

+
M∑
i=1

M∑
j=1

qj,i µj p(n + ej − ei)

We insert the product form solution of Jackson’s theorem as a trial and show that the equation

indeed is satisfied.

The following realtions hold for the product form trial



λi p(n− ei) = µi 1ni>0 p(n)

λj p(n− ei) = µj p(n− ei + ej)

λi p(n) = µi p(n + ei)

Substitute these relations, in this order, into the first three terms on the rhs.
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Proof of Jackson’s theorem (continued)

The equation takes now the form

λ p(n) +
M∑
i=1

µi1ni>0 p(n) =
M∑
i=1

µi 1ni>0 p(n)− M∑
i=1

M∑
j=1

qj,i µj p(n− ei)

+
M∑
i=1

qi,d λi p(n)

+
M∑
i=1

M∑
j=1

qj,i µj p(n + ej − ei)

The second term on the lhs and the first term on the rhs cancel; so do the second and fourth

term on the rhs. What remains is

λ p(n) =
M∑
i=1

qi,d λi p(n) = p(n)
M∑
i=1

qi,d λi

which is satisfied, because the streams into and out from the network are equal, λ =
M∑
i=1

λiqi,d.

Thus we have shown that the product form solution stated in Jackson’s theorem indeed satisfy

the global balance equations of the Markov process describing the network.
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Example




λ1 = λ + λ2

λ2 = q · λ1

⇒




λ1 =
λ

1− q

λ2 =
λ · q
1− q

ρ1 = λ1/µ1, ρ2 = λ2/µ2

p(n1, n2) = (1− ρ1)ρ
n1
1 (1− ρ2)ρ

n2
2

CPU

µ1

I/O

µ2

λ1
λ

λ1

λ2 λ2=qλ1

(1-q)λ1

Mean queue lengths

N̄1 =
ρ1

1− ρ1
, N̄2 =

ρ2

1− ρ2
, N̄ = N̄1 + N̄1 =

ρ1

1− ρ1
+

ρ2

1− ρ2

mean time in the system

T̄ =
N̄

λ
=

ρ1

λ(1− ρ1)
+

ρ2

λ(1− ρ2)
=

λ1/µ1

λ(1− λ1/µ1)
+

λ2/µ2

λ(1− λ2/µ2)
=

S1

1− λS1
+

S2

1− λS2

Equivalent system

I/O
1/S2

CPU
1/S1

missä



S1 =
λ1

µ1λ
=

1

1− q
· 1

µ1
averge CPU time

S2 =
λ2

µ2λ
=

q

1− q
· 1

µ2
average I/O time
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Mean results of Jackson’s networks

Assume state independent service rates µi.

Mean number of customers in node i

N̄i =
ρi

1− ρi

Mean sojourn time in node i

T̄i =
N̄i

λi
=

1

1− ρi

1

µi
=

1

µi − λi

Mean waiting time in node i

W̄i = T̄i − 1

µi
=

ρi

1− ρi

1

µi

Mean time in the network of a customer entering node i

T̄i,d = T̄i +
M∑
j=1

qi,jT̄j,d

cf. flow conservation equations

From this set of eqs. (i = 1, . . . , M ) the T̄i,d can be solved.

Mean time in the network of a customer (average over the whole customer population)

λ λ

By Little’s result

T̄ =
N̄

λ
=

1

λ

M∑
i=1

λi

µi − λi
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Optimal capacity allocation

We wish to minimize the mean time T̄ spent by customers in the network, or, equivalently,

mean number of customers N̄ in the network.

Assume that the capacities µi can be freely chosen except for the constraint (cost constraint)∑M
i=1 µi = C.

N̄ =
M∑
i=1

λi

µi − λi
= min!,

M∑
i=1

µi = C

By the method of Lagrange multipliers one minimizes

H =
M∑
i=1

λi

µi − λi
+ x(

M∑
i=1

µi − C)

with respect to the parameters µi and then determines x such that the minimum satisfies the

constraint

∂H

∂µi
= − λi

(µi − λi)2
+ x = 0 ⇒ µi = λi + (λi/x)1/2

By inserting this into the constraint condition, one gets

1√
x

=

C −∑
j

λj

∑
j

√
λj

⇒ µi = λi +

√
λi∑

j

√
λj

(C − ∑
j

λj)

One first allocates the man-

datory capacity λi; the excess

money is distributed in rela-

tion to the
√

λi.
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Arrival theorem of open networks (Random Observer Property, cf. PASTA)

In on open network a customer entering any queue sees the same state probabilities (the

probability the system is in a state just before the arrival) are the same as the equilibrium

probabilities p(n).

Proof. Consider a customer transiting from queue i to queue

j. Insert between these queues a virtual queue 0 with a very

high service rate µ0.

In the limit µ0 → ∞, the added queue does not affect the

system at all: the customers transiting from queue i to queue

j spend an infinitesimal time in the added virtual queue.

i

j

0

The virtual queue, however, enables “catching” the transiting customer. The transition occurs

precisely in the short interval when there is customer in queue 0, i.e. when N0(t) = 1. The

state distribution seen by the transiting customer is the distribution of the other queues (than

queue 0) conditioned on N0 = 1.

Now make use of the fact that also the extended system is a Jackson network with a product

form solution. Denote the state vector of the extended system by n′, i.e. n′ = (n0, n1, . . . , nM).

It holds p′(n′) = P{N′ = n′} = p0(n0)p1(n1) · · · pM(nM) = p0(n0)p(n).

P{N1 = n1, . . . , NM = nM |N0 = 1} =
P{N0 = 1, N1 = n1, . . . , NM = nM}

P{N0 = 1} = p(n)
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Closed queueing networks (Gordon and Newell networks)

A closed queueing network consists of M nodes. In contrast to an open network, there is no

external source or sink. There is a constant population of K customers in the network.

• Each node i is a FIFO queue, where the service time is drawn independently from the

distribution Exp(µi). Again we could have state dependent service rates µi(ni).

• A customer departing from queue i chooses queue j next with probability qi,j.

The customer streams through different nodes satisfy

the conservation law

λi =
M∑
j=1

λjqj,i i = 1, . . . , M

λ1 λ2

λ3

λ4

λ1 λ2

λ3

λ4

µ1

µ3

µ2

µ4

1 2

3

4

These constitute a homogeneous linear set of equations. One equation is linearly dependent

on the others, and the solution is determined uniquely up to a constant factor.

Let (λ̂1, . . . , λ̂M) be a solution. The general solution is of the form α ·(λ̂1, . . . , λ̂M), where α is

a constant. Which value of α corresponds to the actual streams remains so far undetermined.

This will be fixed later (see MVA). Let this value be denoted by α̂, i.e. λi = α̂λ̂i.

Denote ρ̂i = λ̂i/µi. These quantities are correspondingly proportional to the real loads of the

queues ρi = λi/µi, viz. ρi = α̂ρ̂i.



J. Virtamo 38.143 Queueing Theory / Queueing networks 14

The theorem of Gordon and Newell

The equilibrium probabilities of a closed queueing network are

p(n) =




1

G(K, M)

M∏
i=1

ρ̂n1
i , when

∑
i ni = K

0, when
∑

i ni 6= K
where G(K, M) =

∑
n:

∑
i ni=K

M∏
i=1

ρ̂n1
i

The proof is similar to that in open networks. The details will be omitted.

The probability distribution is again of product form in the allowed region
∑

i ni = K (but

not everywhere!).

Note. Although the factors ρ̂i contain an undetermined coefficient, the solution itself is unique,

as the same factor in power K appears in the product and the norm factor in the denominator.

Arrival theorem in closed networks (Lavenberg)

In a closed network with K customers, the state probabilities seen by a customer entering

any node are the same as the equilibrium probabilities p[K − 1](n) in a network with K − 1

customers (Compare with the state distribution in the Engset system; an arbitrary customer

is as if he were an “external observer”).

The theorem can be proven in the same way by means of a virtual queue as in the case of the

open network. Details will be omitted.
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Mean value analysis, MVA (Reiser and Lavenberg)

Our objective now is to find the mean number of customers N̄i[K] and sojourn times T̄i[K]

as well as the absolute values of customer streams λi through different queues.

The analysis is cenrally based on the arrival theorem. The calculation proceeds recursive-

ly, incrementing the customer population in the network step by step. Therefore, the total

customer population is explicitly indicated in brackets.

The mean sojourn time in queue i is

T̄i[K] =
1

µi︸︷︷︸
own ser-

vice time

+ N̄∗
i [K] · 1

µi︸ ︷︷ ︸
the time it takes to

serve the cutomers

ahead

where N̄∗
i [K] is the mean occupancy seen by a customer arriving at queue i.

By the arrival therem we have

N̄∗
i [K] = N̄i[K − 1]

where N̄i[K − 1] is the mean occupancy calculated from the equilibrium distribution. Thus

T̄i[K] = (1 + N̄i[K − 1]) · 1

µi
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Mean value analysis (continued)

The mean occupancy in queue i is

N̄i[K] = K · λ̂i · T̄i[K]
M∑
j=1

λ̂j · T̄j[K]

Proof. The real customer streams are λi = α̂λ̂i. By expanding the above expression by α̂ and

by applying Little’s result we see that

K · λ̂i · T̄i[K]
M∑
j=1

λ̂j · T̄j[K]
= K · λi · T̄i[K]

M∑
j=1

λj · T̄j[K]
= K · N̄i[K]

M∑
j=1

N̄j[K]
= K · N̄i[K]

K
= N̄i[K]

Using Little’s result in the reverse direction we get the real customer stream through queue i:

λi[K] =
N̄i[K]

T̄i[K]
= K · λ̂i

M∑
j=1

λ̂j · T̄j[K]
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MVA algorithm

The results can be collected as the following recursive method.

Start of the recursion:

N̄i[0] = 0 In an empty network all mean queue lengths are zero.

Recursion step:

T̄i[K] = (1 + N̄i[K − 1]) · 1

µi

N̄i[K] = K · λ̂i · T̄i[K]
M∑
j=1

λ̂j · T̄j[K]

λi[K] =
N̄i[K]

T̄i[K]

In the equation in the middle, the λ̂i are any solution to the flow equations λi =
∑

j λjqj,i.
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Example 1. Cyclic network

λ
µ µ µ. . .

µ1 = µ2 = · · · = µM = µ

A solution to the flow equations is:

λ̂1 = λ̂2 = · · · = λ̂M = 1

Since all the queues are identical we can drop the node index. Now the recursion equations

read



T̄ [K] = (1 + N̄ [K − 1]) · 1
µ

N̄ [K] = K/M

λ[K] = N̄ [K]/T̄ [K]

Starting from the initial value N̄ [0] = 0, one solves the mean values for progressively greater

populations



T̄ [1] = 1
µ

N̄ [1] = 1
M

λ[1] = 1
M µ




T̄ [2] = M+1
M

1
µ

N̄ [2] = 2
M

λ[2] = 2
M+1 µ




T̄ [3] = M+2
M

1
µ

N̄ [2] = 3
M

λ[2] = 3
M+2 µ

. . .




T̄ [K] = M+K−1
M

1
µ

N̄ [K] = K
M

λ[K] = K
M+K−1

µ

When K � M then λ[K] ≈ K
M µ (mean time of a full cycle is M/µ, there are K customers).

When K � M then λ[K] ≈ µ (all queues full; customers depart on av. at intervals 1/µ).
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Example 2.

λ1

λ2

µ

µ

2/3

1/3

K = 3

A solution to the flow equations is:

λ̂1 = 2, λ̂2 = 1

Starting from the initial values N̄1[0] = N̄2[0] = 0, one solves the mean values for progressively
greater populations

K = 1




T̄1[1] = 1
µ

N̄1[1] = 1 · 2/µ
2/µ+1/µ = 2

3

λ1[1] = 2
3 µ




T̄2[1] = 1
µ

N̄2[1] = 1 · 1/µ
2/µ+1/µ = 1

3

λ2[1] = 1
3 µ

K = 2




T̄1[2] = (1 + 2
3)

1
µ = 5

3
1
µ

N̄1[2] = 2 · 2·5/3
2·5/3+1·4/3 = 10

7

λ1[2] = 6
7 µ




T̄2[2] = (1 + 1
3)

1
µ = 4

3
1
µ

N̄2[2] = 2 · 1·4/3
2·5/3+1·4/3 = 4

7

λ2[2] = 3
7 µ

K = 3




T̄1[3] = (1 + 10
7 ) 1

µ = 17
7

1
µ

N̄1[3] = 3 · 2·17/7
2·17/7+1·11/7 = 34

15

λ1[3] = 14
15 µ




T̄2[3] = (1 + 4
7)

1
µ = 11

7
1
µ

N̄2[3] = 3 · 1·11/7
2·17/7+1·11/7 = 11

15

λ2[3] = 7
15 µ
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Norton’s theorem

For queueing networks, one can derive the same kind of Norton’s theorem that is used in the

analysis of linear circuits. In the case of queueing networks, the theorem can be proven by

using the known equilibrium distribution.

When we are interested in the behaviour of just a part of the network, say queue i, the rest

of the network can be replaced by an “equivalent queue”.

N-n

N customers in the network.

N − n customers in queue i.

n customers in other part of the network.

T(n)

Calculate the throughput (stream) T (n)

for the “short circuited” system as a func-

tion of the number of customers n.

N-nn

µn=T(n)

The equivalent queue replacing the other

part of the network has a state dependent

service rate T (n). Queue i behaves exact-

ly as in the original network.


