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Priority queues

Consider an M/G/1 queue where the customers are divided into K priority classes, k =

1, . . . , K:

- class 1 has the highest priority and class K the lowest priority

- the arrival rates of different classes are λ1, . . . , λK (Poissonian)

- the expectation and second moment of the service time of different classes: Sk ja S2
k,

k = 1, . . . , K.

We derive mean results of the Pollaczek-Khinchinin type for this kind of queueing system.

• Priority queues are becoming more important also in telecommunication systems

– in computer systems (e.g. operating systems) they have been exploited for a long time

• We are fucussing on the so called tiem priority, which defines the service order of different

classes

– by giving a customer a higher priority one can reduce delay and delay variation

• For finite size queues (e.g. a finite buffer), a separate issue arises regarding the control of

losses (overflow); this gives rise to the notion of space priority.
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Non-preemptive priority

• The service of the customer being served is completed even if customers of higher priority

may arrive.

• Each priority class has a separate (logical) queue.

• When the server becomes free, customer from the head of the highest priority non-empty

queue enters the server.

Notation



N̄ (k)
q = mean number of waiting class-k customers in the queue

Wk = mean waiting time of class-k customers

ρk = the load of class k, ρk = λkSk

R = the mean residual service time in the server (upon arrival)

The stability condition of the queue:

ρ1 + · · · + ρK < 1

If the condition is violated, the queues belonging to priority clasees lower than some limit k

(i.e. with a higher class index k) will grow without bound.
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Non-preemptive priority (continued)

In the same way is in the derivation of the Pollaczek-Khinchinin mean results we deduce for

the highest priority class 1:

W 1 = R + S1N̄
(1)
q

where the latter term represents the average time needed to serve

the class-1 customers ahead in the queue

By Little’s result we have

N̄ (1)
q = λ1W 1 ⇒ W 1 = R + ρ1W 1 ⇒ W 1 =

R

1− ρ1

For priority class 2 we get analogously

W 2 = R + S1N̄
(1)
q + S2N̄

(2)
q︸ ︷︷ ︸

time needed to serve

class-1 and class-2 custo-

mers ahead in the queue

+ S1λ1W 2︸ ︷︷ ︸
time needed to serve those customers

in higher classes that arrive during

the waiting time of class-2 customer

By Little’s result we again get

N̄ (2)
q = λ2W 2 ⇒ W 2 = R + ρ1W 1 + ρ2W 2 + ρ1W 2 ⇒ W 2 =

R + ρ1W 1

1− ρ1 − ρ2
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Non-preemptive priority (continued)

By inserting in the expression for W 2 the formula for W 1 we get

W 2 =
R

(1− ρ1)(1− ρ1 − ρ2)

By continuing in the same way to lower priority classes (higher values of k) we get the general

result

Wk =
R

(1− ρ1 − · · · − ρk−1)(1− ρ1 − · · · − ρk)

The total time in system of class-k customers is on the average

Tk = Wk + Sk

The mean residual service time R appearing in Wk can be derived by the same kind of

graphical “triangle trick” as in the case of the Pollaczek-Khinchinin mean value formula:

R =
1

2

K∑
k=1

λkS2
k
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Observations about the non-preemptive priority

• The analysis cannot easily be extended for multiserver systems

– the residual service time R is difficult to determine

– can, however, be determined if the service time of all the classes has an exponential

distribution with the same mean

• The mean waiting time of customer can be controlled by the choice of the priority class

– if highest priority is given to those customers which have the shortest service times,

then the mean waiting time of the whole customer population will be minimized

– cf. the queue at a copying machine, where ususally a person with only one page to

copy is given priority ovar those taking copy of a whole report

– in the case of two priority classes the mean sojourn time is

T =
λ1T 1 + λ2T 2

λ1 + λ2

– one can show that if S1 < S2, then T is smaller than in the case where the priorities

were interchanged (or no priorities were used)

• The waiting time of also the highest priority class 1 depends on the traffic of the lower

classes (on the λk) because the non-preemptivity means that the lower classes are not

completely “invisible” to the higher classes.
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Preemptive resume priority

The service of customer is interrupted when on arrival of customer belonging to a higher class

arrives, and will be resumed fromt hte point of interruption, when all the queues of the higher

priority classes have been emptied

• In this case the lower priority class customers are completely “invisible” and do not affect

in any way the queues of the higher classes.

• In the case of packet queues, the preemptive priority is approximated if the sending of the

packets takes place in small pieces, e.g. ATM cells which have (non-preemptive priorities)

– when a packet of a higher priority arrives, the sending of the cells belonging to the

lowecr priority packet is interrupted and is continued first whean all the highre priority

packets have been fully sent
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Preemptive resume priority (continued)

We wish to calculate the mean sojourn time Tk of class-k customers. It is composed of three

parts:

1. The customer’s own mean service time Sk

2. The mean time to serve the customers in classes 1, . . . , k ahead in the queue

Rk

1− ρ1 − . . .− ρk

, missä Rk = 1
2

∑k
i=1 λiS2

i ,

which is the same as the mean waiting time in an M/G/1 queue arising solely from the

customers in classes 1, . . . , k. This is due to the fact that the unfinished work of classes

1, . . . , k (not affected by classes k + 1, . . . , K) does not at all depend on the mutual

service order of customers in classes 1, . . . , k (since the unfinished work is “anonymous”).

3. the mean time it takes to serve those customers in the higher classes 1, . . . , k − 1 which

arrive during the time the calss-k customer stays in the system

k−1∑
i=1

SiλiT k =
k−1∑
i=1

ρiT k, k > 1 (0, jos k = 1)



J. Virtamo 38.143 Queueing Theory / Priority queues 8

Preemptive resume priority (continued)

By collecting the results together we obtain

Tk = Sk +
Rk

1− ρ1 − · · · − ρk
+

( k−1∑
i=1

ρi

)
Tk

T 1 =
(1− ρ1)S1 + R1

1− ρ1

Tk =
(1− ρ1 − · · · − ρk)Sk + Rk

(1− ρ1 − · · · − ρk−1)(1− ρ1 − · · · − ρk)


