J. Virtamo 38.143 Queueing Theory / Continuous Distributions 1

CONTINUOUS DISTRIBUTIONS
Laplace transform (Laplace-Stieltjes transform)

Definition

The Laplace transform of a non-negative random variable X > 0 with the probability density
function f(x) is defined as

fi(s) = /OOO e f(t)dt = Ele ]| = /0 e 'dF(t) also denoted as Lx(s)

e Mathematically it is the Laplace transform of the pdf function.

e In dealing with continuous random variables the Laplace transform has the same role as
the generating function has in the case of discrete random variables.

— if X is a discrete integer-valued (> 0) r.v., then f*(s) = G(e™*)
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Laplace transform of a sum

Let X and Y be independent random variables with L-transforms f%(s) and fy(s).

fiiyv(s) = Bl ]
= Ele *¥Xe "]
= Ele **|E[e "] (independence)

= fx(s)fy(s)

fxiv(s) = fx(s)fy(s)
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Calculating moments with the aid of Laplace transform

By derivation one sees

d
F(5) = “LleY] = Bf=Xe~™
Similarly, the n* derivative is
dn
P = 2 pfe-ex) = Bf(—x e
Sn

Evaluating these at s = 0 one gets

BEX] = —f(0)
BX? = +f"(0)

ELX") = (=1)"f*"(0)
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Laplace transform of a random sum
Consider the random sum
Y =X+ -+ Xy

where the X; are 7.1.d. with the common L-transform f%(s) and
N >0 is a integer-valued r.v. with the generating function Gy(2).

fy(s) = E[e™]
= E[E [6—31/ | N N (outer expectation with respect to variations of N)
= E[E [6_5<X1+“'+XN> | N]] (in the inner expectation N is fixed)
— E[E[e=*(XV)]...Ele*¥~)]]  (independence)
|

= Gn(f%(s)) (by the definition E[z"] = Gn(2))
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Laplace transform and the method of collective marks
We give for the Laplace transform
ff(s) =E[e**], X >0, the following

Interpretation: Think of X as representing the length of an interval. Let this interval be subject

to a Poissonian marking process with intensity s. Then the Laplace transform f*(s) is the
probability that there are no marks in the interval.

P{X has no marks} = E[P{X has no marks|X}] (total probability)
= E[P{the number of events in the interval X is 0| X }|
= Ele™] = f(s)
ntenstieett s P{there are n events in the interval X | X'} = (Sff!)ne_sx

bl

o o P{the number of events in the interval X is 0| X} = e
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Method of collective marks (continued)

Example: Laplace transform of a random sum
Y=X1+---4+ Xy, where
X1~ Xy~ -+~ Xy, common L-transform f*(s)

N is a r.v. with generating function Gy(z)

intensiteetti s

fi-(s) = P{none of the subintervals of Y is marked} l l

-

= Gn( fx(s) )
probability that a
single subinterval

has no marks

probability that none of
the subintervals is marked

X, X,

Xy
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Uniform distribution X ~ U(a, b)

The pdf of X is constant in the interval (a, b):
o a<r<b
0 elsewhere

i.e. the value X is drawn randomly in the interval (a, b).

f(x) F(x)

| |
a b g a lb i
E[X] — /_Jrozoa:f(x)dx:a;b
0 = o= Y a5
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Uniform distribution (continued)
Let Uy, ..., U, be independent uniformly distributed random variables, U; ~ U(0, 1).

e The number of variables which are < z (0 < z < 1)) is ~ Bin(n, x)
— the event {U; < x} defines a Bernoulli trial where the probability of success is
o Let Uy, ..., Uy be the ordered sequence of the values.

Define further Uy = 0 and U4y = 1.
It can be shown that all the intervals are identically distributed and

P{U(i+1)—U(Z-)>CU}:(1—£U)n 1=1,...,n

— for the first interval Uy —U(p) = Uy the result is obvious because Uy = min(Uy, ..., U,)
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Exponential distribution X ~ Exp(\)

(Note that sometimes the shown parameter is 1/, i.e. the mean of the distribution)

X is a non-negative continuous random variable with the cdf

l—e ™M >0 o
0 xr <0

()

B e ™™ x>0 '
f(x){o r <0

X

Example: interarrival time of calls; holding time of call
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Laplace transform and moments of exponential distribution

The Laplace transform of a random variable with the distribution Exp(\) is

A
* [0 st -\t o
fi(s)= [ e e dt—>\+8
With the aid of this one can calculate the moments:
E[X] - —f*'(O) - (Aj\s)? =0 %
B = +70) = 2], - %

VIX] = E[X? -EX] = 3

10
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The memoryless property of exponential distribution

Assume that X ~ Exp()\) represents e.g. the duration of a call.

What is the probability that the call will last at least time x more given that it has already
lasted the time ¢:

P{X >t+z, X >t}
P{X >t}
P{X >t+x}
P{X >t}

6—/\(t+x)

P{X>t+a|X >t} =

P{X>t+zx|X >t} =P{X >z}

e The distribution of the remaining duration of the call
does not at all depend on the time the call has already
lasted

e Has the same Exp(\) distribution as the total duration
of the call.
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Ezxample of the use of the memoryless property

A queueing system has two servers. The service times are

assumed to be exponentially distributed (with the same pa-
rameter). Upon arrival of a customer (¢) both servers are
occupied (x) but there are no other waitng customers.

The question: what is the probability that the customer (¢) will be the last to depart from
the system?

The next event in the system is that eithe of the customers

(x) being served departs and the customer enters (¢) the
freed server.

By the memoryless property, from that point on the (remaining) service times of both custo-
mers (¢) and (x) are identically (exponentially) distributed.

The situation is completely symmetric and consequently the probability that the customer
(¢) is the last one to depart is 1/2.
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The ending probability of an exponentially distributed interval

Assume that a call with Exp(\) distributed duration has lasted the time t.
What is the probability that it will end in an infinitesimal interval of length A7

P{X <t+h|X >t} = P{X <h} (memoryless)

= 1—e M
— 1—(1—>\h+%(>\h)2—---)
= M+ O(h)

The ending probability per time unit = A (constant!)

13



J. Virtamo 38.143 Queueing Theory / Continuous Distributions 14

The minimum and maximum of exponentially distributed random variables
Let Xy ~ - -~ X, ~ Exp(}) (4.1.d.)

The tail distribution of the minimum is

P{min(Xy,..., X,) >z} = P{Xj >z} ---P{X, >z} (independence)
_ (G—Ax)n — e—n)\ac

The minimum obeys the distribution Exp(nA).

arallel processes each of which ends with
The ending intensity of the minimum = nA\ T pal Pt which ends wi

intensity A independent of the others

The cdf of the maximum is X4
—Az\n — X :
P{max(X,,...,X,) <z} = (1—e ) 2 X
The expectation can be deduced by inspecting the figure N ‘ X4
— X5 1
E[max(X1 X )] _ 1 + 1 4t l o o o o o
T e (n— 1A A £
~Exp(nA) ~EXp(A)

~Exp((n-1)A)
~Exp((n-2)A)
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Erlang distribution X ~ Erlang(n,A)  Also denoted Erlang-n()).

X is the sum of n independent random variables with the distribution Exp(\)
X=X;+---+X, X; ~ Exp(A)  (i.i.d.)
The Laplace transform is
* >\ n
f(s)=(5—2)

A+s
By inverse transform (or by recursively convoluting the density function) one obtains the pdf
of the sum X
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Erlang distribution (continued): gamma distribution

The formula for the pdf of the Erlang distribution can be generalized, from the integer para-
meter n, to arbitrary real numbers by replacing the factorial (n — 1)! by the gamma function
['(n):

flx) = e Gamma(p, \) distribution

Gamma function I'(p) is defined by
©  _y el By partial integration it is easy to see that when
I'(p) = / e “u’du . . .
0 p is an integer then, indeed, I'(p) = (p — 1)!

The expectation and variance are n times those
of the Exp(A) distribution:
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Erlang distribution (continued)

Example. The system consists of two servers. Customers
arrive with Exp(A) distributed interarrival times. Custo-
mers are alternately sent to servers 1 and 2.

[ -
The interarrival time distribution of customers arriving at ~Exp(A)
a given server is Erlang(2, \).
Proposition. Let N;, the num-  Proof.
ber of events in an interval of Fr(t) = P{T, <t} =P{N, > n}
length ¢, obey the Poisson di- .
stribution: = Y PN, =i} =3 ( .') oMt
Ny ~ Poisson(\t) =" i=n b
Then the time 7}, from an ar- o G\ (M)
" _ 4a Y
bitrary event to the n' event fr, = &tn () Z; T
thereafter obeys the distribu- o M)
tion Erlang(n, \). > e
1=n (/l/ - 1)'
1tz 3 o ()\75)7:1 JpY
| | | (n—1)!
0 T

N; tapahtumaa

17

~Erlang(2))
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Normal distribution X ~ N(u, o?)

The pdf of a normally distributed random variable X with parameters p ja o

L p2e? Parameters p1 and o? are the
e

fz) =

expectation and variance of the

distribution

Proposition: If X ~ N(u,0?), then Y = aX + 8 ~ N(au + 3, a’c?).

Proof:
Fy(y) = P{Y <y} = P{X <8} = Fy(F)

_ /(?J—ﬁ)/a 1 6—%($—u)2/02d$ Z:OHZ—Fﬁ

—00 \V2mo

_ (Y 1 ~Lia—(a 2/(ao)?
= [ e e e g,

X —p

o)

Seuraus: / =

~N(O,1)  (a=1/0, B=—p/o)

Denote the pdf of a N(0,1) random variable by ®(x). Then
Fu(r) = P{X < o} = P{Z < 20} = d(222)

1S
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Multivariate Gaussian (normal) distribution

Let X1,..., X, be aset of Gaussian (i.e. normally distributed) random variables with expec-
tations 1, . .., 4, and covariance matrix
ot - O
I' = : T : O'Z-Qj = COV[XZ',X]'] (0-122 = V[XZ])
Ou O

Denote X = (X1,..., X,)%.
The probability density function of the random vector X is

Fx) = s )

Jem)rr

where |I'| is the determinant of the covariance matrix.

By a change of variables one sees easily that the pdf of the random vector Z = T'=2(X — )
is (2m) "% exp(—3z'z) = dme /2. e/,

Thus the components of the vector Z are independent N(0,1) distributed random variables.

Conversely, | X = p + /27 | by means of which one can generate values for X in simulations.




