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ESSENTIALS OF PROBABILITY THEORY

Basic notions

Sample space S

S is the set of all possible outcomes e of an experiment.
Example 1. In tossing of a die we have S = {1,2,3,4,5,6}.
Example 2. The life-time of a bulb S = {x € R | x > 0}.
Event

An event is a subset of the sample space S. An event is usually denoted by a capital letter
A B, ...

If the outcome of an experiment is a member of event A, we say that A has occurred.
Example 1. The outcome of tossing a die is an even number: A ={2,4,6} C S.
Example 2. The life-time of a bulb is at least 3000 h: A ={x € R | z > 3000} C S.

Certain event: The whole sample space §.

Impossible event: Empty subset ¢ of S.
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Combining events

Union “A or B”.

AUB={ecS|ec Aorec B}

Intersection (joint event) “A and B”.

ANB={eeS|ec Aande € B}

Events A and B are mutually exclusive, if AN B = ¢.

Complement “not A”.

A={ecS|ed A}

Partition of the sample space

A set of events Ay, Ao, ... is a partition of the sample space S if
1. The events are mutually exclusive, A; N A; = ¢, kun ¢ # j.
2. Together they cover the whole sample space, U;A; = S.

ALB

AnB
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Probability
With each event A is associated the probability P{A}.

Empirically, the probability P{ A} means the limiting value of the relative frequency N(A)/N
with which A occurs in a repeated experiment
N = number of experiments

P{A} = Jim N(A)/N

N(A) = number of occurrences of A

Properties of probability

| —

0<P{A} <1

2.P{S} =1 P{o}=0

.P{AU B} =P{A} +P{B} —P{AN B}

If AN B =0, then P{AU B} = P{A} + P{B}
If A,NA;=0fori#j, then P{UA;} =P{AU...UA,} =P{A} +...P{4,}

5. P{A} =1 - P{A4}
6. If A C B, then P{A} < P{B}

=~ W
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Conditional probability

The probability of event A given that B has occurred. P{AnB}
P{ANB °
P{A|B} = { ) = P{AN B} = P{A|B}P{B}
P{B}
P{B}
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Law of total probability

Let {By,..., By} be a complete set of mutually exclusive events,
i.e. a partition of the sample space S,

1. U;B, = §& certain event P{u;B;} =1
2. BiﬂBj:gb fOl”Z#] P{BZDBJ}:O

Then A=ANS=ANU;B;) =U;(ANB;) and

P{A} = ¥ P{AN B} = ¥ P{A| B)P(B}

Calculation of the probability of event A by conditioning on
the events B;. Typically the events B; represent all the possible
outcomes of an experiment.
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Bayes’ formula
Let again { By, ..., B,} be a partition of the sample space.
The problem is to calculate the probability of event B; given that A has occurred.

P{ANB;}  P{A|B;}P{B;}

P{B;|A} = P{A} _ZP{A!Bj}P{Bj}

Bayes’ formula enables us to calculate a conditional probability when we know the reverse
conditional probabilities.

Example: three cards with different colours on different sides.

rr:  both sides are red T
bb: both sides are blue 1]
. N

rb: one side red, the other one blue

The upper side of a randomly drawn card is red. What is the probability that the other side
is blue?

P{ib|red} — P{red |rb}P{rb}

P{red|rr}P{rr} 4+ P{red|bb}P{bb} + P{red |rb}P{rb}
1.1 1

— 2X3 _
1x%+0x%+%x% 3
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Independence

Two events A and B are independent if and only if

P{AN B} = P{A} - P{B)

For independent events holds
P{ANB} P{A}P{B}

PLAIB) = P{Bl ~  P{B}

= P{A} “B does not influence occurrence of A”.

Example 1: Tossing two dice, A = {ny =6}, B ={ny =1}
ANB={(6,1)}, P{ANB} =, all combinations equally probable
P{A} = P{(6,1), (6,2), (6,3), (6,4), (6,5), (6,6)} = & = L similarly P{B} = {

6’
P{A}P{B} = - =P{ANB} = independent

Example 2: A ={n; =6}, B={n;+n2 =9} ={(3,6),(4,5),(5,4),(6,3)}
ANB=1{(6,2)}
P{A}=¢, P{B}=4, P{ANB}=x
P{A} -P{B}#P{ANB} = Aand B dependent
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Probability theory: summary

e Important in modelling phenomena in real world

— e.g. telecommunication systems
e Probability theory has a natural, intuitive interpretation and simple mathematical axioms
e Law of total probability enables one to decompose the problem into subproblems

— analytical approach

— a central tool in stochastic modelling

e The probability of the joint event of independent events is the product of the probabilities
of the individual events
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Random variables and distributions

Random variable

We are often more interested in a some number associated with the experiment rather than
the outcome itself.

Example 1. The number of heads in tossing coin rather than the sequence of heads/tails

A real-valued random variable X is a mapping
X: §—R
which associates the real number X (e) to each outcome e € S.

Example 2. The number of heads in three consecutive tossings of a coin (head = h, tail=t

(tail))

e | X(e)
hhh| 3 e The values of X are “drawn”
hht | 2 by “drawing” e
hth 2
hﬁﬁ % e ¢ represents a “lottery ticket”,
Eh N ] on which the value of X is writ-
tth| 1 ten
ttt 0
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The image of a random variable X

e may be finite or countably infinite: discrete random variable

e uncountably infinite: continuous random variable

Distribution function (cdf, cumulative distribution function)

Sx={reR|X(e)=1z, ec S} (complete set of values X can take)

F(X) A
F(z) = P{X < 2} A
The probability of an interval Fix.)
F(X1) //
P{z, < X < a9} = F(xy) — F(x1) . -

Complementary distribution function (tail distribution)
G(x)
1 [

Gr)=1—F(zr)=P{X > x}

\4
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Continuous random variable: probability density function (pdf)

f(x) R

. Ple< X <z+dr}
= lim
dx dz—0 dx

\4

11
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Discrete random variable
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12

The set of values a discrete random variable X can take is either finite or countably infinite,

X € {xl, To, .. }

With these are associated the point probabilities

pi = P{X = x;}

which define the discrete distribution

The distribution function is a step function, which

has jumps of height p; at points x;.

Probability mass function (pmf)

plo) = P(X =} = |

Pi
0,

when © = x;
otherwise

F(x) R
1 L e —
Ps
P, |
(o8
| \ \ >
Xi %X X3 X
p(x) ,
1 [
X1 X2 X3 g
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Joint random variables and their distributions

Joint distribution function

Fxy(z,y) =P{X <z,Y <y}

Joint probability density function

0 0

Ixy(z,y) = %a—yFX,Y(SU,y)

YA

YA

] dy

dx

X X

The above definitions can be generalized in a natural way for several random variables.

Independence

The random variables X and Y are independent if and only if
the events {X < x} and {Y <y} are independent, whence

Fyy(r,y) = Fx(x) - Fy(y)

fxy(wy) = fx(@) - fr(y)

(the conditions
are equivalent)

13
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Function of a random variable

Let X be a (real-valued) random variable and g(-) a function (g: R — R). By applying the
function g on the values of X we get another random variable Y = g(X).

Fy(y) = Fx(g'(y))| since Y <y & gX)<y & X <g 'y

Specifically, if we take g(-) = Fx(-) (image [0,1]), then

Fy(y) = Fx(Fx'(y)) =y

and the pdf of Y is fy(y) = diny(y) = 1, i.e. Y obeys the uniform distribution in the interval
(0,1).

Fx(X)~U X ~ F(U) ~ means “identically distributed”

This enables one to draw values for an arbitrary random variable X (with distribution function
Fx(z)), e.g. in simulations, if one has at disposal a random number generator which produces
values of a random variable U uniformly distributed in (0,1).
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The pdf of a conditional distribution

Let X and Y be two random variables (in general, dependent). Consider the variable X
conditioned on that Y has taken a given value y. Denote this conditioned random variable by
Xiy—y-

The conditional pdf is denoted by fX|Y:y = fx|v(z,y) and defined by

fxy(z,y) = W where the marginal distribution of Y is fy (y) = /OO fxy(z,y)dx
y\Y —00 N
the distribution is limited in the strip Y € (y, y + dy)
W y [xy(x,y)dydx is the probability of the element dzdy
in the strip
X fy(y)dy is the total probability mass of the strip

If X and Y are independent, then fxy(z,y) = fx(z)fy(y) and
fxv(z,y) = fx(x), ie. the conditioning does not affect the distribution.
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Parameters of distributions

Expectation

Denoted by E[X] = X

Continuous distribution: E[X] = /

Discrete distribution: | E[X] = > x;p;

In general: E[X] = /_OZO rdF () dF'(z) is the probability of the interval dx

Properties of expectation

ElcX] = cE[X] c constant
E[X) + -+ X, = E[Xq4] + - + E[X}] always
E[X - Y] =E[X]-E[Y] only when X and Y are independent
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Variance

Denoted by V[X] (also Var|X])

VIX] = E[(X — X)7]| = E[X?] - E[X]?

Covariance

Denoted by Cov[X, Y]

Cov[X,Y] = E[(X — X)(Y — V)] | = E[XY] — E[X]E[Y]

Cov]X, X| = V[X]
If X are Y independent then Cov|[X, Y] =0

17
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Properties of variance

VieX] = AV[X]
VX 4 X = > CovlXi, X

1,7=1

VX1 4+ X, =V[Xi]+ -+ V[X,]

c constant; observe square

always

only when the X, are independent

Properties of covariance

Cov|X, Y] = Covl|Y, X]
CovlX + Y, Z] = Cov[X, Z] + Cov]Y, Z]

18
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Conditional expectation

The expectation of the random variable X given that another random variable Y takes the
value Y =y is

EX|Y =y] = /_OZO 2 fx|y(x,y)dz | obtained by using the conditional distribution of X.

E[X|Y = y| is a function of y. By applying this function on the value of the random variable
Y one obtains a random variable E [ X | Y] (a function of the random variable Y).

Properties of conditional expectation

E[X|Y] = E[X] if X and Y are independent
ElcX|Y]=cE[X|Y] c is constant
EX+YI|Z]|=EX|Z]+E[Y|Z]
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Conditional variance

VIX|Y]=E [(X ~E[X|Y)])?] Y} Deviation with respect to the conditional expectation

Conditional covariance

Cov| X, Y| Z]=E[(X -EX|Z)Y -EY|Z])|Z]

Conditioning rules

= E[E[X|Y]] (inner conditional expectation is a function of ')
EVIX[Y]]+ VIE[X]Y]]
Cov|X,Y] =E[Cov| X,Y | Z]| + Cov]E [X | Z] ,E[Y | Z]]

=
>
||
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The distribution of max and min of independent random variables

Let X4,..., X, be independent random variables
(distribution functions Fj(x) and tail distributions G;(x), i =1,...,n)

Distribution of the maximum
P{max(Xy,..., X,) <z} = P{X; <z,.... X, <z}
= P{X; <z} -P{X, <=z} (independencel)
— F1(SU) e Fn(SU)

Distribution of the minimum
P{min(Xy,..., X,,) >z} = P{X;>=x,..., X, >z}
= P{X; >z} --P{X,, >z} (independence!)



