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ESSENTIALS OF PROBABILITY THEORY

Basic notions

Sample space S
S is the set of all possible outcomes e of an experiment.

Example 1. In tossing of a die we have S = {1, 2, 3, 4, 5, 6}.
Example 2. The life-time of a bulb S = {x ∈ R | x > 0}.
Event

An event is a subset of the sample space S . An event is usually denoted by a capital letter

A, B, . . .

If the outcome of an experiment is a member of event A, we say that A has occurred.

Example 1. The outcome of tossing a die is an even number: A = {2, 4, 6} ⊂ S .

Example 2. The life-time of a bulb is at least 3000 h: A = {x ∈ R | x > 3000} ⊂ S .

Certain event: The whole sample space S .

Impossible event: Empty subset φ of S .



J. Virtamo 38.143 Queueing Theory / Probability Theory 2

Combining events

Union “A or B”.

A ∪B = {e ∈ S | e ∈ A or e ∈ B}
A

B

A B∪

Intersection (joint event) “A and B”.

A ∩B = {e ∈ S | e ∈ A and e ∈ B}

A B∩

A

B

Events A and B are mutually exclusive, if A ∩B = φ.

Complement “not A”.

Ā = {e ∈ S | e /∈ A}

A

A

Partition of the sample space

A set of events A1, A2, . . . is a partition of the sample space S if

1. The events are mutually exclusive, Ai ∩Aj = φ, kun i 6= j.

2. Together they cover the whole sample space, ∪iAi = S .

A1 A2
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Probability

With each event A is associated the probability P{A}.
Empirically, the probability P{A} means the limiting value of the relative frequency N(A)/N

with which A occurs in a repeated experiment

P{A} = lim
N→∞N(A)/N




N = number of experiments

N(A) = number of occurrences of A

Properties of probability

1. 0 ≤ P{A} ≤ 1

2. P{S} = 1 P{φ} = 0

3. P{A ∪ B} = P{A} + P{B} − P{A ∩ B}

A
B

A B∪

4. If A ∩ B = 0, then P{A ∪B} = P{A} + P{B}
If Ai ∩Aj = 0 for i 6= j, then P{∪iAi} = P{A1 ∪ . . . ∪An} = P{A1} + . . . P{An}

5. P{Ā} = 1− P{A}
6. If A ⊆ B, then P{A} ≤ P{B}
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Conditional probability

The probability of event A given that B has occurred.

P{A |B} =
P{A ∩B}

P{B} ⇒ P{A ∩B} = P{A |B}P{B}
A

B

P{A B}∩

P{B}
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Law of total probability

Let {B1, . . . , Bn} be a complete set of mutually exclusive events,

i.e. a partition of the sample space S ,

1. ∪iBi = S certain event P{∪iBi} = 1

2. Bi ∩Bj = φ for i 6= j P{Bi ∩Bj} = 0

Then A = A ∩ S = A ∩ (∪iBi) = ∪i(A ∩ Bi) and

P{A} =
n∑

i=1
P{A ∩ Bi} =

n∑
i=1

P{A |Bi}P{Bi}

Calculation of the probability of event A by conditioning on

the events Bi. Typically the events Bi represent all the possible

outcomes of an experiment.

A
B1

B2 B3
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Bayes’ formula

Let again {B1, . . . , Bn} be a partition of the sample space.

The problem is to calculate the probability of event Bi given that A has occurred.

P{Bi |A} =
P{A ∩ Bi}

P{A} =
P{A |Bi}P{Bi}∑

j
P{A |Bj}P{Bj}

Bayes’ formula enables us to calculate a conditional probability when we know the reverse

conditional probabilities.

Example: three cards with different colours on different sides.

rr: both sides are red

bb: both sides are blue

rb: one side red, the other one blue

The upper side of a randomly drawn card is red. What is the probability that the other side

is blue?

P{rb | red} =
P{red | rb}P{rb}

P{red | rr}P{rr} + P{red |bb}P{bb} + P{red | rb}P{rb}

=
1
2×1

3
1×1

3+0×1
3+1

2×1
3

=
1

3
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Independence

Two events A and B are independent if and only if

P{A ∩B} = P{A} · P{B}
For independent events holds

P{A |B} =
P{A ∩ B}

P{B} =
P{A}P{B}

P{B} = P{A} “B does not influence occurrence of A”.

Example 1: Tossing two dice, A = {n1 = 6}, B = {n2 = 1}
A ∩ B = {(6, 1)}, P{A ∩B} = 1

36
, all combinations equally probable

P{A} = P{(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)} = 6
36 = 1

6; similarly P{B} = 1
6

P{A}P{B} = 1
36 = P{A ∩ B} ⇒ independent

Example 2: A = {n1 = 6}, B = {n1 + n2 = 9} = {(3, 6), (4, 5), (5, 4), (6, 3)}
A ∩ B = {(6, 2)}
P{A} = 1

6
, P{B} = 4

36
, P{A ∩B} = 1

36

P{A} · P{B} 6= P{A ∩ B} ⇒ A and B dependent
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Probability theory: summary

• Important in modelling phenomena in real world

– e.g. telecommunication systems

• Probability theory has a natural, intuitive interpretation and simple mathematical axioms

• Law of total probability enables one to decompose the problem into subproblems

– analytical approach

– a central tool in stochastic modelling

• The probability of the joint event of independent events is the product of the probabilities

of the individual events
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Random variables and distributions

Random variable

We are often more interested in a some number associated with the experiment rather than

the outcome itself.

Example 1. The number of heads in tossing coin rather than the sequence of heads/tails

A real-valued random variable X is a mapping

X : S 7→ R
which associates the real number X(e) to each outcome e ∈ S .

Example 2. The number of heads in three consecutive tossings of a coin (head = h, tail=t

(tail))

e X(e)

hhh 3
hht 2
hth 2
htt 1
thh 2
tht 1
tth 1
ttt 0

• The values of X are “drawn”

by “drawing” e

• e represents a “lottery ticket”,

on which the value of X is writ-

ten
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The image of a random variable X

SX = {x ∈ R | X(e) = x, e ∈ S} (complete set of values X can take)

• may be finite or countably infinite: discrete random variable

• uncountably infinite: continuous random variable

Distribution function (cdf, cumulative distribution function)

F (x) = P{X ≤ x}

The probability of an interval

P{x1 ≤ X ≤ x2} = F (x2)− F (x1)

F(x)

1

F(x )2

F(x )1

x1 x2 x

Complementary distribution function (tail distribution)

G(x) = 1− F (x) = P{X > x}

G(x)

1

x
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Continuous random variable: probability density function (pdf)

f(x) =
dF (x)

dx
= lim

dx→0

P{x < X ≤ x + dx}
dx

f(x)

x

1
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Discrete random variable

The set of values a discrete random variable X can take is either finite or countably infinite,

X ∈ {x1, x2, . . .}.

With these are associated the point probabilities

pi = P{X = xi}
which define the discrete distribution

The distribution function is a step function, which

has jumps of height pi at points xi.

F(x)

1

x1

p1

p2

p3

x2 x3 x

Probability mass function (pmf)

p(x) = P{X = x} =




pi when x = xi

0, otherwise

p(x)

1

x1 x2 x3 x
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Joint random variables and their distributions

Joint distribution function

FX,Y (x, y) = P{X ≤ x, Y ≤ y}
x

y

Y

X

Joint probability density function

fX,Y (x, y) =
∂

∂x

∂

∂y
FX,Y (x, y)

x

y
dx

dy

X

Y

The above definitions can be generalized in a natural way for several random variables.

Independence

The random variables X and Y are independent if and only if

the events {X ≤ x} and {Y ≤ y} are independent, whence

FX,Y (x, y) = FX(x) · FY (y) fX,Y (x, y) = fX(x) · fY (y)
(the conditions

are equivalent)
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Function of a random variable

Let X be a (real-valued) random variable and g(·) a function (g: R 7→ R). By applying the

function g on the values of X we get another random variable Y = g(X).

FY (y) = FX(g−1(y)) since Y ≤ y ⇔ g(X) ≤ y ⇔ X ≤ g−1(y)

Specifically, if we take g(·) = FX(·) (image [0,1]), then

FY (y) = FX(F−1
X (y)) = y

and the pdf of Y is fY (y) = d
dyFY (y) = 1, i.e. Y obeys the uniform distribution in the interval

(0,1).

FX(X) ∼ U X ∼ F−1
X (U) ∼ means “identically distributed”

This enables one to draw values for an arbitrary random variable X (with distribution function

FX(x)), e.g. in simulations, if one has at disposal a random number generator which produces

values of a random variable U uniformly distributed in (0,1).
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The pdf of a conditional distribution

Let X and Y be two random variables (in general, dependent). Consider the variable X

conditioned on that Y has taken a given value y. Denote this conditioned random variable by

X|Y =y.

The conditional pdf is denoted by fX|Y =y
= fX|Y (x, y) and defined by

fX|Y (x, y) =
fX,Y (x, y)

fY (y)
where the marginal distribution of Y is fY (y) =

∫ ∞
−∞ fX,Y (x, y)dx

x

y

dy

the distribution is limited in the strip Y ∈ (y, y + dy)

fX,Y (x, y)dydx is the probability of the element dxdy

in the strip

fY (y)dy is the total probability mass of the strip

If X and Y are independent, then fX,Y (x, y) = fX(x)fY (y) and

fX|Y (x, y) = fX(x), i.e. the conditioning does not affect the distribution.
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Parameters of distributions

Expectation

Denoted by E[X ] = X̄

Continuous distribution: E[X ] =
∫ ∞
−∞ x f(x) dx

Discrete distribution: E[X ] =
∑
i

xipi

In general: E[X ] =
∫ ∞
−∞ x dF (x) dF (x) is the probability of the interval dx

Properties of expectation

E[cX ] = cE[X ] c constant

E[X1 + · · ·Xn] = E[X1] + · · · + E[Xn] always

E[X · Y ] = E[X ] · E[Y ] only when X and Y are independent
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Variance

Denoted by V[X ] (also Var[X ])

V[X ] = E[(X − X̄)2] = E[X2]− E[X ]2

Covariance

Denoted by Cov[X, Y ]

Cov[X, Y ] = E[(X − X̄)(Y − Ȳ )] = E[XY ]− E[X ]E[Y ]

Cov[X, X ] = V[X ]

If X are Y independent then Cov[X, Y ] = 0
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Properties of variance

V[cX ] = c2V[X ] c constant; observe square

V[X1 + · · ·Xn] =
n∑

i,j=1
Cov[Xi, Xj] always

V[X1 + · · ·Xn] = V[X1] + · · · + V[Xn] only when the Xi are independent

Properties of covariance

Cov[X, Y ] = Cov[Y, X ]

Cov[X + Y, Z] = Cov[X, Z] + Cov[Y, Z]
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Conditional expectation

The expectation of the random variable X given that another random variable Y takes the

value Y = y is

E [X |Y = y] =
∫ ∞
−∞ xfX|Y (x, y)dx obtained by using the conditional distribution of X .

E [X |Y = y] is a function of y. By applying this function on the value of the random variable

Y one obtains a random variable E [X |Y ] (a function of the random variable Y ).

Properties of conditional expectation

E [X |Y ] = E[X ] if X and Y are independent

E [cX |Y ] = c E [X |Y ] c is constant

E [X + Y |Z] = E [X |Z] + E [Y |Z]
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Conditional variance

V[X |Y ] = E
[
(X − E [X |Y ])2 |Y

]
Deviation with respect to the conditional expectation

Conditional covariance

Cov[ X, Y |Z] = E [(X − E [X |Z])(Y − E [Y |Z]) |Z]

Conditioning rules

E[X ] = E[E [X |Y ]] (inner conditional expectation is a function of Y )

V[X ] = E[V[X |Y ]] + V[E [X |Y ]]

Cov[X, Y ] = E[Cov[ X, Y |Z]] + Cov[E [X |Z] , E [Y |Z]]
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The distribution of max and min of independent random variables

Let X1, . . . , Xn be independent random variables

(distribution functions Fi(x) and tail distributions Gi(x), i = 1, . . . , n)

Distribution of the maximum

P{max(X1, . . . , Xn) ≤ x} = P{X1 ≤ x, . . . , Xn ≤ x}
= P{X1 ≤ x} · · ·P{Xn ≤ x} (independence!)

= F1(x) · · ·Fn(x)

Distribution of the minimum

P{min(X1, . . . , Xn) > x} = P{X1 > x, . . . , Xn > x}
= P{X1 > x} · · ·P{Xn > x} (independence!)

= G1(x) · · ·Gn(x)


