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Abstract

The satellite environment may severly limit TCP per-
formance; achieving high data rates using TCP over
satellite networks can be diÆcult. In this text we de-
scribe why TCP underperforms in satellite environ-
ment and the ways to deal with those diÆcilties.

1 Introduction

Compared to terrestrial links satellite links may be
characterized by

� Long propagation delays. For example, the
round trip time through Low Earth Orbit (LEO)
satellite is 0.25s and through Geosynchronous
Earth Orbit (GEO) satellite is about 0.5s. This
is 20 and 100 times more than 0.005s, which is
the round trip time in a LAN environment [1].

� Higher error rates, which could be as high as
10�5 [1; 2].

� Frequent link outage, which results from a satel-
lite temporary passing out of view of the ground
station, or other short term interruptions.

� Asymmetric forward and return channels. One
example of an asymmetric channels are satellite
down-link and terrestrial up-plink, e.g. a tele-
phone line. Another example, is the communica-
tion with a space probe with a high bandwidth
channel for transferring data from the probe to
the ground and a low bandwidth channel for con-
trolling the probe.

� High cost.

The satellite environment may severely limit TCP
performance; achieving high data rates using TCP
over satellite networks can be diÆcult. In this text

we describe why TCP under-performs in satellite en-
vironment and the ways to deal with those diÆculties.
Satellites have a natural advantage in point-to-
multipoint communication. For example, an MBone
data stream could be transmitted up to a satellite
and then relayed down to a large geographical area.
Any ground station in that area could pick up the
signal if tuned to the right MBone channel. We will
not discuss multicast farther in this paper because
we are concerned with TCP which is a point-to-point
protocol.
The rest of this text is organized as follows. Section 2
contains a literature survey. In section 3 we provide
a brief background on the congestion avoidance and
slow start features of TCP. Section 4 describes the
problems that occur in the operation of TCP over
satellite links as well as the enhancements that mit-
igate those problems. In section 5 we describe two
main ways to improve system performance: a special
purpose application that opens multiple TCP chan-
nels and a relay station that splits a long control loop
into two short ones. The paper ends with Conclusion
section.

2 Literature survey

Transmission Control Protocol (TCP) is de�ned in
RFC 793 [3]. In Chapter 24 of [4] R. Stevens dicusses
some proposed modi�cations to TCP that allow it
to obtain better throughput at higher speeds. Those
include the window scale option, the timestamp op-
tion and the PAWS (Protection Against Wrapped
Sequence numbers) algorithm that are de�ned in
RFC 1323 [5]. RFC 1323 is a descendant of RFC 1072
[6]. The earlier RFC 1072 contained a selective ac-
knowledgement option for TCP which was later re-
moved from RFC 1323 because it was incompatible
with the window scaling option. Later, another ver-



sion of selective acknowledgement mechanism which
corrects the shortcomings of RFC 1072 was de�ned
by Mathis et al in RFC 2018 [7].
Compressing the segment header can improve TCP
performance when the forward and backward chan-
nels are asymmetrical. A di�erential compression
scheme for TCP headers is de�ned in RFC 1144 [8].
R. Durst et al discuss TCP extensions for space com-
munications in [2]. They criticize both RFC 2018 and
RFC 1144 and propose alternative implementations.
Selective acknowledgement of RFC 2018 is criticized
because the feature consumes too much space in the
TCP header and the header compression scheme of
RFC 1144 is criticized because di�erential compres-
sion is not suitable for environments in which syn-
chronization is expensive. In [9] Lakshman et al
present a simple model of TCP behavior over asym-
metric forward and backward channels. They show
that TCP performance deteriorates rapidly once the
product of the loss probability, the asymmetry ratio
and the square of the bandwidth delay product ex-
ceeds a threshold.
A paper by C. Partridge and T. J. Shepard sur-
veys the issues concerning TCP/IP performance over
satellite link [1]. They conclude that the �rst step
to achieve high performance is making sure that the
sending and receiving TCP implementations contain
all the modern features: large windows, PAWS and
selective acknowledgements and that the TCP win-
dow space is larger than the delay bandwidth product
of the path. A paper by M. Allman et al describes
experimental results of running a TCP with modern
features over a satellite link [10]. They also present
XFTP, an application for bulk data transfer that im-
proves transmission by opening several parallel TCP
channels between sender and receiver.
The reports by C. Barakat and E. Altman [11] and
N. Chaher et al [12] are concerned with the problems
that occur when the bu�er of the receiving TCP is
much smaller than the bandwdth delay product of
the network.
RFC 2488 [13], RFC 2414 [13] and the Internet Draft
\Ongoing TCP Research Related to Satellites" [14]
represent the work of IETF concerned with TCP over
satellites. RFC 2488 is a summary of IETF standard-
ized mechanizms, e. g. selective acknowledgements,
that enable TCP to more e�ectively utilize the avail-
able capacity of the network path. The Internet Draft
[14] is a systematic survey of new modi�cations that
are proposed by the research community.
A discussion on how to improve TCP performance
over wireless links can be found in the articles of H.
Balakrishnan et al [15, 16].

3 Background on TCP

Design principles. TCP is designed to �ll an oth-
erwise idle link and if the link is not idle to share the
available bandwidth with other users. The protocol
design follows the end-to-end philosophy: it requires
nothing from the network except for existence of data
link layer.
Reliable transmission. Transmission is made reli-
able via the use of sequence numbers and acknowledg-
ments. Conceptually, each octet of data is assigned a
sequence number. The sequence number of the �rst
octet of data in a segment (TCP packet) is trans-
mitted with that segment and is called the segment
sequence number. Segments also carry and acknowl-
edgment number which is the sequence number of the
next expected data segment in the reverse direction.
When TCP transmits a segment containing data, it
puts a copy on a retransmission queue and starts a
timer; when the acknowledgment for that data is re-
ceived, the segment is deleted from the queue. If the
acknowledgment is not received before the timer has
run out, the segment is retransmitted.
TCP is a \closed loop" protocol because it relies on a
stream of positive acknowledgments to clock out data
continuously from the sender. A stream of acknowl-
edgments is essential to the operation of TCP.
Flow control. The receiving TCP reports a win-
dow to the sending TCP. This window speci�es the
number of octets, starting with the acknowledgment
number that the receiving TCP is currently prepared
to receive [3].
TCP uses two algorithms, \slow start" and \conges-
tion avoidance" to adapt its window to the network
state. In the following we assume that the window N
is measured in segments.
Slow start. Starting at N = 1, slow-start is used to
increase N by one segment for every incoming ACK
until N reaches a threshold considered as an estima-
tion of the network capacity. This exponential growth
reduces the burstiness of the network traÆc. The
threshold window size for the �rst slow start is given
a default value at the beginning of the connection.
For subsequent slow-starts it is determined dynami-
cally as a function of network parameters.
Congestion avoidance. After the threshold is
reached, the source moves to congestion avoidance
where N is increased by 1 segment for every window
worth of acknowledged packets, hence every round
trip time T . This slower growth aims to probe the
network for extra bandwidth and it continues until a
segment is lost.
Fast retransmit and fast recovery. The loss is
detected either by timeout or by two or more con-
secutive ACKs carrying the same sequence number.
Berkeley-derived implementations count the number



of duplicate ACKs received and when the third one
is received, assume that the segment has been lost
and retransmit only one segment starting with the
sequence number in the ACK [4].
When detecting a segment loss the source assumes
that the network is congested and resets the window
size to N=2; it considers half the window at which
the loss is detected as a good estimate of available
capacity. What happens next depends on the ver-
sion of TCP. TCP Tahoe assumes that the network
is congested, resets N to 1 and resorts to slow start.
TCP Reno version will resort to slow start if the loss
is indicated by timeout; if the loss is detected by
multiple acknowledgements it starts a new conges-
tion avoidance phase after recovering from the losses.
TCP Reno considers multiple acknowledgements as
an indication of light congestion [4, 11].
TCP uses slow start in three di�erent ways: to start
a new connection, to restart a transmission after a
retransmission timeout and to restart a transmission
after a long idle period.

4 Using TCP over satellite

links

4.1 Theoretical performance limits

In what follows we shall use a formula from queuing
theory known as Little's result [17, 18]. Consider a
general queuing system on �gure 1. If a system is in a
steady state, Little's result relates the average num-
ber of customers in a system N to the average arrival
rate � and the average time spent in that system T ,
namely,

N = �T: (1)

Suppose that T is �xed. Two consequences of (1) are
immediate in a network environment. First,

N � max(�)T: (2)

In a point-to-point communication max(�) is the
bandwidth B of the communication link and T is the
round trip time on that link. The bandwidth delay
product BT is an important characteristic of network
environment.
Second,

� � max(N)=T; (3)

which means that if the time in the system T is
�xed, the maximum throughput is determined by the
maximum window size.
Equations (1-3) govern the behavior of transmission
protocols. For example, the window �eld in TCP
header is 16 bits, which means that the maximum
window size that can be advertized by the receiver

is 216 bytes. By Eq. (3) � � 216=T . On a GEO
satellite link T = 0:5s. It follows that the maxi-
mum throughput that can be achieved on such link is
1 MBytes/s. To mitigate this problem RFC 1323 [5]
de�nes a window scale option which increases the def-
inition of TCP window from 16 to 32 bits. The header
still holds a 16 bit value, and an option is de�ned that
scales the 16 bit value. The maximum window size is
230, which gives maximum throughput of 2 GBytes/s
over GEO satellite link.
As another example, consider a situation in which
the lastly received segment is lost, or corrupted. It
takes one round trip time T for the receiver to get
a copy of a lost segment. During that time at most
BT new bits may arrive through communication link.
Before the lost segment arrives those bits have to be
queued because TCP delivers data in the sent order.
It follows that to prevent data loss at the receiving
TCP its bu�er should be larger than the bandwidth
delay product BT .

4.2 DiÆculties caused by TCP design

Slow start. There are several problems with slow
start algorithm on high-speed networks. First, it can
take quite a long time to get up to speed. For exam-
ple, on a Gb/s GEO satellite link with T = 0:5s, it
takes 29 round-trip times to or 14.5s to �nish start
up [1]. If the link is otherwise idle, during that pe-
riod most of the bandwidth will be unused. The en-
tire transfer may �nish before the full link speed is
reached. The user will never experience the full link's
bandwidth. All the transfer time will be spent in slow
start.
Double slow start. Second, during slow start TCP
sends larger and larger bursts of data into the net-
work. If the threshold window size at which TCP
should change from slow start to congestion avoidance
is too large, the bu�ers in the receiver or the network
will overow before getting in congestion avoidance.
Multiple losses force TCP to reduce its window and
to begin a new slow-start with threshold that is less
than the network capacity estimate. This results in
low average throughput. One possible solution to this
problem is to probe the network in order to obtain a
better initial value of the threshold.
Data loss. Third, TCP assumes that virtually all
packet loss is caused by network congestion. Conse-
quently, TCP invokes congestion control and reduces
its transmission rate as a result of any packet loss.
This response is inappropriate when loss is due to
corruption rather than congestion. In case of corrup-
tion you should transmit more, not less. However, in
case of congestion transmitting more is like pouring
gasoline on the �re. The fast retransmit algorithm in
TCP Reno detects loss, and thus avoids slow start,



by means of duplicate acknowledgments. I think that
negative acknowledgments would be a better solution
to the problem.
With cumulative ACKs and fast retransmit TCP can
recover eÆciently from a single loss per window. How-
ever, because new data must be received for the re-
ceiver to advance the ACK number, TCP requires a
minimum of one round trip time T to signal each ad-
ditional hole in the out-of-sequence queue. To deal
with this problem a Selective ACK (SACK) mecha-
nism is de�ned in RFC 2018. SACKs generated at
the receiver contain a list of correctly received data
blocks. The sender gets explicit information on which
segments have arrived and which may have been lost.
Thus the sender has more information about which
segments may need to be retransmitted.
Rollover of segment counter. On high speed con-
nections the 32 bit sequence number may roll over
from 232 to 0 during TCP connection's life time. This
may cause old segments to reappear and contain se-
quence numbers currently being transmitted. To pre-
vent this problem RFC 1323 introduced the Protec-
tion Against Wrapped Sequence numbers (PAWS) al-
gorithms. With PAWS the sender time-stamps each
segment. The receiver uses segment number concate-
nated with the time stamp as the segment identi�er.
Even if the segment number rolls over, the old and the
new segments will be distinguished by the segment's
time stamp.
Asymmetric channels. As mentioned in the Intro-
duction, the satellite and the space communication
may be characterized by asymmetric up and down
channels. The asymmetry may be in terms of band-
width and error rate. The bandwidth ratio of the
down to the up channel can be as high as 1000:1 [2].
A receiving TCP generally acknowledges every other
segment, which dictates and ACKs channel capacity
proportional to the data channel capacity and is a
function of the segment size.
Here is a rough calculation: Assume segment size of
103 bytes. The size of the TCP header is 20 bytes
and each header contains a single ACK;

103 : 20 = 50 : 1:

It follows that with a 103 bytes segment size, TCP
throughput is not a�ected by the bandwidth ratio of
the forward and the return channels when that ratio
is less than 50 : 1. At higher ratios throughput is
limited by the ACKs channel capacity.
One way to deal with this problem is reduce the
amount of acknowledgments generated by the receiv-
ing TCP. However, acknowledgments are so central
to the operation of the TCP that a big change in the
ACKs mechanism will result in a di�erent protocol.
Another way to cope with the limited link capacity
is to compress TCP header. A di�erential compres-

sion scheme for TCP headers is de�ned in RFC 1144
[8]. The compression is done on IP level, hop-by-hop.
Initially, the header is saved. Subsequently, only the
changes to the previous header are sent to the other
end. If the segment is lost or corrupted, the invalid
TCP header will be detected when the TCP check-
sum fails. Retransmissions are sent uncompressed to
facilitate synchronization. The header compression
scheme of RFC 1144 is criticized by R. Durst et al
in [2] because di�erential compression is not suitable
for environments in which synchronization is expen-
sive.

5 Improving system perfor-

mance

Custom applications. An application-level ap-
proach to improve system performance is shown on
�gure 4. The source and the destination applications
establish n TCP connections which allows them to
send n times more data during TCP slow start and
recover more quickly from congestion avoidance. In
[10] M. Allmann et al describe XFTP, an applica-
tion for bulk data transfer that is based on FTP and
that splits the data among multiple TCP connections.
XFTP performed better than FTP over satellite links.
The disadvantage of this approach is that one has to
build custom application; the data must be split be-
tween the TCP channels at the source and merged
at the destination. Another concern with allocating
multiple TCP channels is that, similarly to increas-
ing the initial window size, it will increase the overall
burstiness of the network which will result in more
packet losses [14].
Splitting the control loop. A well known way to
get rid of problems concerning long delay in a con-
trol loop is to split it into several small loops. A
similar idea has been proposed in the Internet Draft
\Ongoing TCP Research Related to Satellites" [14].
The satellite link is isolated from the rest of the In-
ternet using two routers: a virtual destination and
a virtual source (see �gure 2). The TCP sender �rst
transmits to the virtual destination that will take care
of acknowledgments and retransmissions. The router
acknowledges the data to the source as if the TCP re-
ceiver has got the data; it sends then the data through
the satellite link. At the other end the virtual source
transmits to the receiver (it needs to queue the out-
standing segments). The routers may use a custom
protocol to communicate over the satellite link. The
advantage of this con�guration is that it is transpar-
ent to the sending and receiving TCP. The disadvan-
tage is that it breaks the end-to-end semantics asso-
ciated with TCP.
A variation on this idea is the Snoop protocol [16]



that provides performance improvements on wireless
links by introducing an agent at the base station that
monitors the passing TCP traÆc and cashes packets
until they are acknowledged. The agent is able to
detect lost segments through the receipt of duplicate
acks or by a local time-out. When the agent detects a
packet loss in the wireless link, it retransmits the lost
packet and intercepts the duplicate acknowledgments
to prevent the TCP sender from invoking congestion
control. In e�ect, the agent covers for losses on the
wireless link transparently to the sending TCP.
I think that the problem of long delay in space com-
munications will be solved similarly. The space probe
which may be millions of kilometers away will com-
municate with Earth through a chain of relay stations
(see �gure 3).

6 Conclusion

There are many similarities between the space and
the mobile communication environments when ob-
served from the perspective of transport protocol.
Also, in both environments, power, weight and physi-
cal volume of equipment are scarce resources. Similar
problems lead to similar solutions.
Satellite links are characterized by a high bandwidth
delay product. TCP under-performs in high band-
width delay environments were end-to-end synchro-
nization is expensive. The performance of the TCP
can be improved substantially if the sending and the
receiving TCP implementations contain the features
described in RFC 1323 [5].
Since TCP assumes very little from the network it
works (adequately) in many di�erent environments.
The design choices of a protocol made for for space
communications would be di�erent from those of
TCP. For example, I'd use rate-based (token bucket)
rather than window-based congestion control, explicit
signaling of link outage and negative, rather than pos-
itive acknowledgments.
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Figure 1: A general queueing system. Little's result
states that in the steady state the average number of
customers in the system N equals the arrival rate �
times the average time spent in the system T .
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Figure 2: Isolating the satellite link by inserting vir-
tual destination and virtual source.
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Figure 3: Shortening the control loop by inserting
relay stations.
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Figure 4: Application-level approach to improve sys-
tem performance.


