
A transport protocol for SIP

Gonzalo Camarillo
Advanced Signalling Research Lab.

Ericsson
Finland

Gonzalo.Camarillo@ericsson.com

Henning Schulzrinne
Department of Computer Science

Columbia University
USA

hgs@cs.columbia.edu

Raimo Kantola
Networking Laboratory

Helsinki University of Technology
Finland

Raimo.Kantola@hut.fi

$EVWUDFW
&XUUHQW�6,3� LPSOHPHQWDWLRQ� W\SLFDOO\�XVH�7&3�RU�8'3
DV� D� WUDQVSRUW� SURWRFRO�� 7KH� GLIIHUHQFHV� EHWZHHQ� 6,3
RYHU� 8'3� DQG� 6,3� RYHU� 7&3� KDYH� DOUHDG\� EHHQ
DQDO\]HG�DQG�DUH�UHODWLYHO\�ZHOO�NQRZQ��+RZHYHU�� WKHUH
KDYH�QRW�EHHQ�VR�IDU�6,3�LPSOHPHQWDWLRQV�WKDW�XVH�6&73
DV�D�WUDQVSRUW��7KLV�SDSHU�DQDO\]HV� WKH�DGYDQWDJHV� WKDW
FDQ�EH�GHULYHG�IURP�WKH�XVH�RI�6&73�DV�D� WUDQVSRUW� IRU
6,3��,W�VKRZV�KRZ�ZKLOH�6&73�LV�DQ�H[FHOOHQW� WUDQVSRUW
SURWRFRO� IRU� KLJK� OHYHOV� RI� WUDIILF� LWV� SHUIRUPDQFH
GHFUHDVHV� ZKHQ� WKH� QXPEHU� RI� 6,3� WUDQVDFWLRQV
WUDQVPLWWHG�LQ�SDUDOOHO�GHFUHDVHV�

�� ,QWURGXFWLRQ
The Session Initiation Protocol (SIP) is an application-
layer protocol for creating, modifying and terminating
sessions. SIP [1] is designed in a modular way so that it
is independent of the type of session established and of
the lower-layer transport protocol used. Its modularity is
one of the most important strengths of SIP. It makes SIP
flexible and easy to extend with new features.

The SIP specification describes how the protocol
operates over TCP [2] and over UDP [3]. Both transport
protocols have different characteristics and provide a
particular SIP application with different services. TCP
provides reliable in-order transfer of bytes while UDP
does not ensure neither reliability nor in-order delivery.
Both UDP and TCP present certain advantages and
disadvantages, and also both of them present certain
limitations regarding signalling transport.

The limitations present in TCP and UDP for transporting
signalling traffic led to the design of a new transport
protocol within the IETF. The SIGTRAN working group
developed the Stream Control Transmission Protocol
(SCTP). SCTP [4] was first intended to transport
telephony signalling over an unreliable network such as
an IP network. However, the protocol has been designed
so that SCTP can be used as a general-purpose transport
protocol.

There have been already attempts to define SIP operation
on top of SCTP [5]. However, although there are already
implementations of telephony signalling protocols such

as ISUP on top of SCTP, so far there has not been any
implementation of SIP over SCTP that could show the
gains that SCTP might achieve. This document discusses
advantages and disadvantages derived from the use of
SCTP as a transport protocol for SIP.

The remainder of this document is organized as follows.
Section 2 and 3 describes SIP operation on top of TCP
and UDP respectively. Pros and cons of each protocol
are analyzed. Section 4 provides an introduction to
SCTP. Section 5 analyzes advantages and disadvantages
of using SCTP as a transport for SIP and finally section
6 outlines some conclusions.

�� 6,3�RYHU�7&3
The natural choice to transport a signalling protocol
whose messages have to be reliably delivered to the
destination seems to be a reliable transport protocol.
Since the most widespread reliable transport protocol is
TCP, it would not have been surprising if SIP had been
designed to run only over TCP. Besides, SIP is based on
HTTP [6], which uses TCP as a transport.

However, TCP presents some limitations regarding
signalling transport. Therefore, SIP was designed to be
independent of the transport protocol. This way, SIP can
also run over UDP overcoming some of TCP’s
limitations. At present, UDP is the most widespread
transport for SIP.

���� 7&3�OLPLWDWLRQV
TCP was designed to transport large amounts of data
between two end-points. Once a connection is
established, TCP implements flow control and error
correction based on the dynamic behavior of the end-to-
end traffic. However, signalling traffic does not consist
of large amounts of data. Signalling traffic usually
consists of small bursts of information. TCP’s flow
control mechanisms are not designed for such as traffic
pattern, and therefore do not perform as well as it might
be expected.

Fast retransmit algorithm
When a large bulk of data is being transmitted by TCP,
ack messages from the receiver are continuously
received indicating which segments have been

successfully received. The receiver sends duplicate acks
when out-of-order segments arrive. Thus, arrival of
duplicate acks indicates that a segment was lost.
Therefore, the sender retransmits it without waiting for a
timeout. This mechanism is referred to as fast retransmit
and it is used together with the fast recovery algorithm.

Sender Receiver

1:257

ack 257

257:513

513:769

ack 257

257:513

)LJXUH�����)DVW�UHWUDQVPLW

Note that the sender in figure 1 retransmit the missing
segment upon reception of a duplicate ack. This flow has
been simplified. A typical implementation waits until
three duplicate acks are received before retransmitting a
segment.

Figure 1 shows how TCP behaves when large bulks of
data are transmitted. Retransmissions are usually
triggered by duplicate acks rather than timeouts. This is
the reason why TCP timeouts are relatively high, in the
order of 1,5 seconds. This allows using the fast
retransmit algorithm before a timeout occurs.

However, SIP messages are relatively small, in the order
of 500 bytes. A SIP message usually fits into a TCP
segment. So, if a TCP segment that contains a SIP
message gets lost, TCP will not be able to receive
duplicate acks, since it is not sending any more data.
Therefore, TCP will have to wait for a timeout in order
to retransmit the missing segment. This results in a too
conservative retransmission policy when TCP transports
SIP signalling.

Sender Receiver

1:513

1:513

ack 513

1,
5

se
cs

)LJXUH�����7&3�WLPHRXW

TCP connection establishment
TCP performs a three-way handshake before any user
data can be transmitted between both ends. In a long-
lived connection, the connection establishment time is
negligible compared to the whole connection duration.
However, signalling traffic is delay sensitive. If a SIP
UAC wants to send an INVITE over TCP it will have to
wait until the TCP connection is established before
sending the INVITE.

Sender Receiver

Established

SYN

SYN

ack

)LJXUH�����7&3�WKUHH�ZD\�KDQGVKDNH

The receiver of figure 3 will not pass any data to the
application until it does not reach the “established” state.
This overhead is not acceptable when the user is
expecting an answer for his INVITE.

TCP implements a special timer for connection
establishment. When a SYN gets lost, a typical
implementation retransmits it after 6 seconds. Therefore,
a single packet loss increases enormously the connection
establishment delay introduced by TCP.

���� 0XOWLSOH�6,3�VHVVLRQV
One straightforward attempt to resolve both issues
previously described consists of bundling several SIP
sessions into a single TCP connection. With a high
number of SIP sessions the TCP connection transports
data continuously so that packet losses are detected by
receiving duplicated acks rather than by timeouts. This
increases the performance of TCP and reduces the delay
introduced to SIP messages.

Another advantage of bundling SIP sessions is that the
first SIP message of a new session does not have to wait
for a new TCP connection to be established before being
transmitted. Since the TCP connection is already
established SIP messages belonging to a new SIP session
are not affected by any additional delay. They can be
sent immediately.

A SIP UAC usually handles a single SIP session, but
proxies in the network have several ongoing SIP sessions
between them at the same time. Therefore, proxies
handling a high number of SIP sessions can typically
take advantage of bundling SIP sessions. Another
example were bundling can be performed is between a
large gateway towards the PSTN and its outbound proxy.

Byte stream service
However, TCP presents an important limitation
regarding bundling of sessions. TCP provides ordered
delivery of a stream of bytes. When TCP is used to
transmit messages it preserves the order in which the
messages were sent by the sender. This property causes
interaction problems between different SIP sessions
carried on a single TCP connection.

Sender Receiver

TCP delivers
1:1025

1:513

513:1025

ack 1

1:513

)LJXUH�����7&3�SURYLGHV�RUGHUHG�GHOLYHU\

The sender of figure 4 sends two INVITEs that belong to
different sessions using the same TCP connection. The
segment carrying the first INVITE gets lost (1:513), but
the segment carrying the second INVITE arrives
properly to the receiver (513:1025). However, since TCP
provides ordered delivery, it will not delivered the
second INVITE to the application until it has delivered
the first INVITE. Therefore, the second INVITE is
delayed until the first INVITE is retransmitted. The
consequence is that a particular SIP session might suffer
delay without having experimented any packet loss, as it
is shown in figure 4.

�� 6,3�RYHU�8'3
Transporting SIP over UDP overcomes some of the
problems associated with TCP. UDP is a connectionless
protocol. Thus, it does not perform any kind of
connection establishment before sending data. Therefore,
a particular INVITE will be sent encapsulated in a UDP
packet without any establishment delay introduced by
the transport protocol.

Since UDP does not provide reliable transport, reliable
delivery is achieved through application level
retransmissions. The SIP application retransmit a
particular SIP messages when the retransmission timer
expires. This retransmission timer is lower than in TCP.
Its default value is 0,5 seconds. Therefore, the
retransmission policy of SIP when it runs over UDP is
more aggressive than when it runs over TCP.

Sender Receiver

INVITE

INVITE

0,
5

se
cs

)LJXUH�����6,3�UHWUDQPLVVLRQ�SROLF\�XVLQJ�8'3

SIP can afford to have a more aggressive retransmission
policy over UDP than TCP because it transmits a small
number of small messages. Therefore, SIP assumes that
it is not going to congest the network because they are
retransmitted more often than TCP.

Therefore, when a single or a small number of SIP
sessions are handled, UDP is a better choice than TCP.
However, UDP, as opposed to TCP, does not hide
retransmissions from the application layer. Thus,
although a SIP application using UDP has to store more
state information than when TCP is used this does not
represent an important issue for most of the applications.

���� 0XOWLSOH�6,3�VHVVLRQV

When there are multiple SIP sessions between two
proxies they can be bundled in a single TCP session to
take advantage of the congestion control mechanisms
built in TCP. Losses are detected before and thus,
performance improves.

However, when UDP is used, the same retransmission
timers apply to every session. This can lead to a poorer
performance and even to network congestion, since UDP
does not provide congestion information to the
application and by default SIP uses a more aggressive
retransmission policy than TCP.

Therefore, for proxies handling a large amount of
connections, the choice between UDP and TCP is not
clear. TCP presents the previously described head of the
line blocking issue and UDP does not implement any
congestion control mechanism. The choice between
TCP and UDP depends on how the network is loaded at
a certain moment and the RTT between sender and
receiver.

�� 6&73
The Stream Control Transmission Protocol (SCTP) is
intended to resolve the issues derived from the use of
TCP and UDP when there are multiple SIP sessions
between sender and receiver. SCTP [4] also provides a
certain level of fault tolerance through multihoming.

���� 6&73�FRQQHFWLRQ�HVWDEOLVKPHQW
SCTP is a connection oriented transport protocol. In
SCTP terminology, a connection is referred to as an
association. An association is established through a four-
way handshake in which the last two messages can
already carry user data.

Sender Receiver

INIT

COOKIE ACK

COOKIE ECHOE

INIT ACK

)LJXUH�����6&73�IRXU�ZD\�KDQGVKDNH

In this handshake end users exchange one or multiple IP
addresses or host names. One destination address will be
marked as the primary. The rest of them will be used in
case the primary destination becomes unavailable. This
feature, known as multihoming, allows a SCTP
connection to survive network failures. The data is just
sent to another destination address in case of failure.

The four-way handshake provides also a certain level of
protection against resource attacks. The receiver, upon
reception of an INIT message sends back a cookie in the
INIT ACK. The receiver does not allocate any resources
for this SCTP association until it receives the same
cookie in the COOKIE ECHOE message. This way,
resources are allocated when it is ensured that the party
sending the INIT message is really willing to establish
an SCTP association.

���� 0XOWLSOH�VWUHDPV�ZLWKLQ�DQ�DVVRFLDWLRQ
SCTP provides multiplexing/demultiplexing capabilities
within an association. A single association can contain
several streams. Each stream is identified by its stream
id. During the four-way handshake the number of
streams in both directions is negotiated.

An association can contain several types of streams. The
base SCTP specification [4] defines two services:
reliable ordered delivery and reliable unordered delivery.
However, there are extensions [7] that provide an
unreliable delivery service.

It is important to note that a particular service is
provided on stream basis. Therefore, one stream within
an association might be an ordered stream while another
is unordered.

����)ORZ�DQG�FRQJHVWLRQ�FRQWURO�SHU
DVVRFLDWLRQ

Even if an association contains several streams, SCTP
performs flow and congestion control per association.
This allows to use the behavior of all the traffic within
the association as input for the flow control mechanisms,
which are effectively very similar to the ones used by
TCP.

For instance, the fast retransmit algorithm can be used
effectively without waiting for timeouts in order to
retransmit data. Figure 7 shows how stream
demultiplexing and flow control work together in an
example.

Sender Receiver

Chunk delivered
for stream id=0

TSN=2
Stream id=1
Stream seq=0

TSN=3
Stream id=0
Stream seq=1

SACK
TSN=1

TSN=1
Stream id=0
Stream seq=0

TSN=2
Stream id=1
Stream seq=0

Chunk delivered
for stream id=0

�)LJXUH�����0XOWLSOH�VWUHDPV�ZLWKLQ�DQ�DVVRFLDWLRQ

The association of figure 7 consists of two ordered
streams (stream id=0 and stream id=1). SCTP
implements a general sequence number space
(Transmission Sequence Number) and a sequence
number space per stream. The general TSN is used to
perform flow control and packet loss recovery and the
stream sequence numbers are used to deliver individual
streams.

When the message with TSN=3 arrives to the receiver,
this knows that TSN=2 is lost. However, it also knows
that TSN=3 is the next packet of stream id=0 (Stream
seq=1). Therefore, it delivers the packet to the
application without waiting to receive TSN=2. In the
SACK (Selective ACK) the receiver reports that TSN=2
was missing.

Therefore, losses in one stream do not introduce delay on
other streams. Besides, since the whole association is
used to perform flow control, the sender detects that
TSN=2 got lost thanks to the SACK sent upon reception
of TSN=3, that belongs to a different stream. This way,

SCTP does not have to wait for a timeout to retransmit
TSN=2.

So, SCTP combines good features of both TCP and
UDP. It bundles streams to take advantage of flow
control mechanisms and delivers separately packets
belonging to different streams.

�� 6,3�RYHU�6&73
It seems clear that proxies that handle multiple SIP
sessions between them can obtain a better performance
using an SCTP association than using TCP or UDP. If
each SIP session is sent over an ordered stream, SIP
messages can take advantage of flow control without
being delayed by lost messages from other sessions.

However, even when multiple ordered streams are used,
it is still possible that messages are delayed by other
messages belonging to the same SIP session. The
example of figure 8 shows how the loss of a provisional
response can delay the delivery of the final response
which was successfully received.

Sender Receiver

180 Ringing
 TSN=2
 Stream id=0
 Stream seq=1

SACK
TSN=1

Delivery of
180 and 200

100 Trying
 TSN=1
 Stream id=0
 Stream seq=0

200 OK
 TSN=3
 Stream id=0
 Stream seq=2

180 Ringing
 TSN=2
 Stream id=0
 Stream seq=1

�)LJXUH�����6,3�RYHU�RUGHUHG�6&73�VWUHDPV

In figure 8 all SIP responses are sent over an ordered
SCTP stream (stream id=0). Therefore, SCTP delivers
messages to the application in order within the stream.
Since the provisional response “180 Ringing” got lost,
SCTP cannot deliver the final response “200 OK” to the
application. SCTP waits until TSN=2 arrives before
delivering both responses.

Unordered service for final responses
In order to overcome this problem SIP final responses
can be sent using the SCTP unordered service. SCTP
allows to send unordered messages within an ordered
stream. Therefore, all SIP messages within a SIP session
are still sent using the same stream, but messages
carrying final responses are sent with the SCTP
unordered flag set.

Note that a receiver performs demultiplexing of
incoming SIP messages based on the Call-ID of the SIP
message rather than on the SCTP stream id. Stream ids
are used here to solve the head of the line blocking
problem. They are not intended to provide further
demupltiplexing.

General unordered service
The method just described would be the most efficient
way of transporting SIP over SCTP. However, there is a
simpler mechanism that behaves nearly as well and
simplifies implementations. It consists of sending all SIP
traffic using the SCTP unordered service. When all SIP
messages are sent with the unordered flag set SCTP
delivers any message received immediately,
independently of which stream the message belongs to.
Thus, SIP entities can perfectly use the same stream id
for all SIP sessions.

This mechanism is simpler because an implementation
does not have to ensure that SIP messages belonging to a
particular SIP session are always sent using the same
stream id. Implementation that are not willing to perform
stream id management should use this mechanism.

An example of such an implementation is a proxy that
does not store state information about SIP transactions
(stateless) but has SCTP associations continuously open
to send SIP messages to certain common destinations.

Note that the use of a hash of the Call-ID of a SIP
message module the number of SCTP streams available
in order to choose the outgoing stream id for the message
has some limitations. Although with a high number of
available streams it is not likely no happen, a system
using this method might end up sending requests with
different Call-IDs using the same stream id. This would
result in the head of the line blocking problem
previously mentioned.

These two methods have the advantage of interworking
together. Any receiver is able to receive traffic from
senders using any of both mechanisms.

���� 'LIIHUHQFHV�EHWZHHQ�ERWK�PHWKRGV
The only difference between both methods is that
sending just final responses with the SCTP unordered

flag set avoids re-ordering of requests and provisional
responses in the parts of the path where SCTP is used.
However, there are just a few scenarios where this can
happen.

Provisional responses
Provisional responses are sent unreliably by SIP. SIP
systems do not rely on provisional responses to drive any
protocol state machine. Therefore, receiving out of order
provisional responses does not represent a problem for a
SIP UAs.

When a SIP UA is interested in provisional responses it
uses the extension defined in [9]. Then, provisional
responses are transmitted reliably. [9] recommends SIP
servers sending provisional responses not to send
subsequent responses until the previous one has been
acknowledged with a PRACK. Thus, using ordered or
unordered SCTP to transport provisional responses does
not make a difference, since the SIP layer ensures that
they are received in order.

Client Server

PRACK

182 Two in the Queue

200 OK

PRACK

182 One in the Queue

200 OK

PRACK

180 Ringing

200 OK

)LJXUH�����6,3�HQVXUHV�LQ�RUGHU�GHOLYHU\

Requests
The behavior of a SIP entity sending requests is similar
to the one described for reliable provisional responses. A
SIP client does not send a request until the previous
transaction has completed. There are two exceptions to
this rule, but in general it does not make a difference the
transport used (ordered or unordered) for requests either.

The only two exceptions when a SIP client sends
overlapping requests are: an INVITE followed by a
CANCEL and an INVITE followed by a BYE. Note that
other methods such as COMET or PRACK are just sent
after a response for the INVITE has been received. Note
also that CANCEL can terminate any request other than
CANCEL and ACK. However, since non-INVITE

requests are responded immediately by the server,
CANCEL is typically used only for INVITE requests.

These two situations are the only ones where both uses
of SCTP described previously differ. If the requests are
sent unordered, a CANCEL or a BYE might overtake the
INVITE sent before. Ordered SCTP ensures that they
arrive in the same order as they were sent. However, this
is only ensured in the part of the path where ordered
SCTP is used. If other transport protocol such as UDP is
used in another part of the path, reordering can still
happen. Therefore, even systems using ordered SCTP
have to be prepared to handle out of order CANCELs
and BYEs. Figure 10 shows how a system using ordered
SCTP might still receive out of order requests.

Proxy 1 Proxy 2

INVITE

Proxy 3

BYE

INVITE

Ordered
transport

UDP

BYE

)LJXUH������,19,7(�IROORZHG�E\�D�%<(

Even if ordered SCTP streams are used, a SIP entity has
to be prepared to received a BYE before an INVITE. A
“481 Transaction Does Not exist” will be sent as
response to the BYE.

Therefore, the only difference between sending all the
SIP traffic with the SCTP unordered flag set and sending
just final responses with this flag is that the likelihood of
receiving a BYE or a CANCEL before an INVITE
decreases using the latter method, although it might still
happen.

���� 2WKHU�VWUHQJWKV�RI�6&73
The previous section described SCTP behaves like a
TCP connection without the head of the line blocking
problem. Besides resolving this problem, SCTP has
some other strengths that SIP can take advantage of.

Message based
SCTP is a message-oriented protocol, as opposed to TCP
that is stream oriented. SCTP delivers messages while
TCP delivers a stream of bytes. This makes it possible
for SCTP to provide unordered delivery of SIP
messages. In TCP this concept would not make any

sense, since delivering unordered bytes would be useless
for an application.

Message-oriented protocols such as SCTP or UDP allow
implementing simpler parsers. When these transport
protocols deliver a message to the application it contains
a single SIP message. In order to parse a SIP message
received over TCP it is necessary to implement
application level boundaries such as the SIP Content-
Length header.

Transport-layer fragmentation

However, although both SCTP and UDP are message-
oriented transport protocols, SCTP has an advantage
over UDP. SCTP implements transport-level
fragmentation while UDP does not. If a SIP message
inside a UDP packet is larger than the path MTU the
packet will be fragmented at the IP layer.

IP-layer fragmentation presents several problems. The
likelihood of having packet losses increases and firewall
and NAT traversal becomes impossible. The fragments
of the UDP packet do not carry the UDP header, which
contains the source and the destination port number of
the UDP packet. Therefore, network devices that need to
examine port numbers will simply discard the packets.

SCTP implements transport-layer fragmentation.
Messages larger than the path MTU are transported in
different SCTP chunks. Every chunk carries complete
transport information, and thus, problems derived from
IP fragmentation are avoided. Different chunks are
reassemble at the destination and delivered to the
application as a single message.

Currently fragmentation does not represent a serious
problem for SIP, since SIP messages are usually smaller
than the path MTU. However, new session description
protocols or new SIP extensions might increase the size
of SIP messages. SCTP fragmentation would then
represent an important advantage.

Bundling of chunks
Figure 11 shows the format of a SCTP packet. It
contains a common header and several chunks. Unless
fragmentation is performed, a chunk contains an
application-level message.

Common
header Chunk 1 Chunk n[...]

)LJXUH������6&73�PHVVDJH�IRUPDW

Therefore, a single SCTP packet can carry several SIP
messages that belong to different sessions. Bundling
SCTP chunks decreases the number of packets sent

through the network. This avoids certain congestion
problems in IP routers and typically achieves a better
performance than sending various individual packets.

Multihoming
SCTP provides several source and destination addresses
within an association. They are intended to provide
alternative paths to be used in case of network failures.
This feature increases the reliability of an association.

Multiple destination addresses are not intended to
provide a load balancing mechanism. SCTP marks one
address as the primary, and all the traffic is routed to that
address until it fails. Other mechanisms such as DNS
SRV [8] records might be used to provide load
balancing. SCTP multihoming just provides a fail over
mechanism.

���� $�VLQJOH�6,3�VHVVLRQ�RYHU�6&73
It is clear that SIP entities that handle a high amount of
SIP traffic between them can take advantage of SCTP
and all its features. However, SCTP advantages are not
so evident when a single SIP session (or a small number
of them) is transported. In this scenario SCTP shares
some problems that TCP has. SCTP association
establishment delays the delivery of the first INVITE,
and once the association is established, SCTP timeouts
are more conservative than the ones used by SIP over
UDP. The initial value for the SCTP retransmission
timer is 3 seconds and even when RTT measurements
are performed its minimum value is 1 second.

Sender Receiver

INVITE

INVITE

3
se

cs

)LJXUH������6&73¶V�LQLWLDO�UHWUDQVPLVVLRQ�WLPHU

The only advantage of SCTP over UDP in a scenario
with low level of SIP traffic is the transport-layer
fragmentation provided by SCTP, since multihoming can
be achieved using UDP in conjunction with DNS SRV
records.

�� &RQFOXVLRQV
The best transport protocol for SIP depends on the
amount of SIP traffic that a particular SIP entity handles.
SIP entities that handle a large amount of SIP traffic
between them such as proxies and large SIP gateways
have in SCTP their best choice. SCTP bundles together
several SIP sessions into a single SCTP association and
then performs flow and congestion control per

association. This way, packet losses are detected before
retransmission timers expire leading to an increase in the
overall performance. Among all the possible services
provided by SCTP, unordered delivery and ordered
delivery with unordered final responses are the ones that
suit SIP better.

However, SIP entities that handle a small number of SIP
sessions such as the SIP UA of a individual user cannot
take advantage of the flow control provided by SCTP.
When a small number of SIP messages are transported
over SCTP packet losses are detected by timeouts. This
leads to a too conservative retransmission policy, since
timers in SCTP are not designed for situations where the
traffic load is very low. Therefore, small SIP entities
have in UDP their best choice. UDP does not introduce
any connection establishment time and retransmit lost
packets in a more aggressive way than SCTP. However,
since SIP applications using UDP do not perform any
congestion control other than implementing a back-off
retransmission timer, the use of UDP is not
recommended for high volumes of SIP traffic.

While TCP is an excellent protocol for transferring large
amounts of data such as files or the contents of a
particular web page, it presents important limitation
regarding signalling transport. Therefore, depending on
the SIP entity, UDP or SCTP are better choices to
transport SIP signalling.

�� $FURQ\PV
ACK: Acknowledgement
DNS: Domain Name System
HTTP: HyperText Transfer Protocol
IP: Internet Protocol
ISDN: Integrated Services Digital Network
ISUP: ISDN User Part Protocol
MTU: Maximum Transmission Unit
NAT: Network Address Translator
PRACK: Provisional ACK
PSTN: Public Switched Telephone Network
RTT: Round Trip Time
SACK: Selective ACK
SCTP: Stream Control Transmission Protocol
SIGTRAN: Signalling Transport
SIP: Session Initiation Protocol
SYN: Synchronize sequence numbers flag
TCP: Transmission Control Protocol
TSN: Transmission Sequence Number
UA: User Agent
UAC: User Agent Client
UDP: User Datagram Protocol

5HIHUHQFHV
[1] Handley M., Schulzrinne H., Schooler E.,

Rosenberg J., “SIP: Session Initiation Protocol”,
RFC 2543. IETF. March 1999.

[2] Postel J., “Transmission Control Protocol”, RFC
793. IETF. September 1981.

[3] Postel J, “User Datagram Protocol”, RFC 768.
IETF. August 1980.

[4] Stewart R., Xie Q., Morneault K., Sharp C.,
Schwarzbauer H., Taylor T., Rytina I., Kalla M.,
Zhang L., Paxson V., “Stream Control Transmission
Protocol”, RFC 2960. IETF. October 2000

[5] Rosenberg J, Schulzrinne H., “SCTP as a Transport
for SIP”, draft-rosenberg-sip-sctp-00.txt. IETF. Jone
2000. Work in progress.

[6] Fielding R., Gettys J., Mogul J., Frystyk H.,
Berners-Lee T., “Hypertext Transfer Protocol --
HTTP/1.1”, RFC 2068. IETF. January 1997.

[7] Xie Q., Stewart R., Sharp C., Rytina I., “SCTP
Unreliable Data Mode Extension”, draft-ietf-sigtran-
usctp-01.txt. IETF. February 2001. Work in
progress.

[8] Gulbrandsen A., Vixie P., Esibov L., “A DNS RR
for specifying the location of services (DNS SRV)”,
RFC 2782. IETF. February 2000.

[9] Rosenberg J., Schulzrinne H., “Reliability of
Provisional Responses in SIP”, draft-ietf-sip-100rel-
03.txt. IETF. March 2001. Work in progress.

