Multicast routing principles in Internet

Motivation
Recap on graphs
Principles
Multicast capability has been and is under intensive development in the 1990’s

- MBONE used to multicast IETF meetings from 1992
- Extends LAN broadcast capability to WAN in an efficient manner
- Valuable applications
 - resource discovery
 - network load minimization by replacing many pt-to-pt transmissions
 - multimedia conferencing
Multicast addresses

32 bits

<table>
<thead>
<tr>
<th>Class</th>
<th>Network</th>
<th>Host</th>
<th>28 bits - multicast group address</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td></td>
<td></td>
<td>224.0.0.0 - 239.255.255.255</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td>experiments</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>224.0.0.1</td>
<td>All systems</td>
</tr>
<tr>
<td>224.0.0.2</td>
<td>All routers</td>
</tr>
<tr>
<td>224.0.0.4</td>
<td>All DVMRP routers</td>
</tr>
<tr>
<td>224.0.0.1 - 224.0.0.255</td>
<td>Local segment usage only</td>
</tr>
<tr>
<td>239.0.0.0 - 239.255.255.255</td>
<td>Admin scoped multicast (local significance)</td>
</tr>
<tr>
<td>239.192.0.0 - 239.195.255.255</td>
<td>Organisation local scope</td>
</tr>
</tbody>
</table>

Ethernet MAC address: MACprefix+G --> no lookup, no ARP

Note: + Sender does not need to belong to G.
+ Address space is flat!
Resource discovery by MC simplifies network management

- No need for lists of neighbors, just use std MC address
- How to find corporate DNS -server --> MC to all nodes in corporate network.
- Network is easily flooded with messages.
- TTL can be used for Broadcast scope limitation
 --> find nearest DNS or whatever
 -- when TTL=0, router does not return ICMP msg!
Conferencing requirements include

- Multiple sources, multiple recipients, multiple media
- Variable membership
- Small conferences with intelligent media control (what is sent to where)
- Large conferences require media processing in special devices
Multipoint sessions differ from point-to-point communication

- Participants may join and leave the session.
- Receiver-makes good principle instead of session parameter negotiation.
- Window based flow control does not apply: -- use UDP / connectionless protocols
Flooding is the simplest MC algorithm

- Need to keep state (DB) in nodes!
- No group membership: target is all nodes

- Examples: OSPF, usenet news...

Flooding algorithm is:

1. Receive M from L
2. Search M in DB
 - found
 - No
 - Accept M
 - Send M to all links but L
 - Yes = M is a duplicate
 - Yes
 - Update DB
 - Send M to all links but L
3. DB older
 - Yes
 - Build m from DB
 - Send M to sender on L
 - No
 - DB(I) = M
4. stop
Alternative to DB in flooding is trace info in the message

- Trace info in Message lists all passed nodes
- Avoids a costly DB reads but may accept same M several times.
- If neighbor is in trace, does not send

Flooding guarantees that node will not forward the same packet twice. It does not guarantee that node will receive same packet only once! --> Greedy algorithm.

+++Does not depend on routing tables --> robust
Networks are modeled as Graphs.

\[G = (V, E), \]

- \(V \) - set of **vertices or nodes** (non-empty, finite set)
- \(E = \{ e_j \mid j = 1, 2, \ldots, M \} \) - set of **edges or links**.

\[e_j = (v_i, v_k) = (i, k) \]

Nodes \(i \) and \(k \) are **adjacent** if link \((i, k)\) exists. Nodes \(i \) and \(k \) are also called **neighbors**.
Links are bi-, arcs are unidirectional

Degree of a node is the number of its neighbors or the number of links incident on the node.

Unidirectional links, \(a_j = (v_i, v_k) = [i,k] \) are called arcs. If links and nodes have properties, the graph is called a network.
Graphs with parallel links are called multigraphs.

Links between a node and itself are self loops.

Graph with no parallel links and no self loops is a simple graph.

A path in a network is a sequence of links beginning at some node s and ending at some node t. = s,t-path. If s = t, path is called a cycle. If an intermediate node appears no more than once, it is a simple cycle.
Graph is **Connected** if there is at least one path between every pair of nodes.

- A subset of nodes with paths to one another is a connected component.

 Reflective: By def. \(\exists i,i\)-path

 Symmetric: \(\exists i,j\)-path \(\Rightarrow\) \(\exists j,i\)-path

 Transitive: \(\exists i,j\)-path and \(\exists j,k\)-path \(\Rightarrow\) \(\exists i,k\)-path

 Components are equivalence classes and the component structure is a partition of the graph.

 Partition applies to links and nodes alike.
A directed graph is strongly connected if there is a directed path from every node to every other node.

- Directed connectivity is not symmetric.
- A subset of nodes with directed paths from any one node to any other is a strongly connected component.
- A node belongs to exactly one strongly connected component. An arc is part of at most one strongly connected component.
A **tree** is a graph without cycles

- Given a Graph $G = (V, E)$, H is a subgraph of G if $H = (V', E')$ where $V' \subset V$ and $E' \subset E$
- A **spanning tree** is a connected graph without cycles.
- If graph is not necessarily connected, we talk about a **forest**.
Spanning trees model minimally connected networks

- ST is a minimum cost network.
- Only a single path exists between any two nodes in a ST, routing is trivial.
- If a graph has N nodes, any tree spanning the nodes has exactly $N - 1$ edges.
- Any forest with k components has exactly $N - k$ edges. (proof by induction starting from graph with no edges).
A set of edges whose removal disconnects a graph is called a **disconnecting set**.

- **XY-cutset** partitions a graph to subgraphs X and Y.
- In a tree any edge is a **minimal cutset**.
- A minimal set of nodes whose removal partitions the remaining nodes into two connected subgraphs is called a **cut**.
<table>
<thead>
<tr>
<th>English Term</th>
<th>Finnish Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertex, node</td>
<td>kärki, solmu</td>
</tr>
<tr>
<td>Edge, link</td>
<td>syrjä, linkki, sivu, kaari, haara</td>
</tr>
<tr>
<td>Adjacent</td>
<td>viereinen</td>
</tr>
<tr>
<td>Neighbor</td>
<td>naapuri</td>
</tr>
<tr>
<td>Degree of a node</td>
<td>solmun aste(?)</td>
</tr>
<tr>
<td>Arc</td>
<td>kaari</td>
</tr>
<tr>
<td>Cycle, Loop</td>
<td>silmukka</td>
</tr>
<tr>
<td>Path</td>
<td>polku</td>
</tr>
<tr>
<td>Directed path</td>
<td>suunnattu polku</td>
</tr>
<tr>
<td>Connected</td>
<td>yhteydellinen, yhdistetty</td>
</tr>
<tr>
<td>Strongly connected</td>
<td>vahvasti yhteydellinen</td>
</tr>
<tr>
<td>Subgraph</td>
<td>aligraafi</td>
</tr>
<tr>
<td>Tree</td>
<td>puu</td>
</tr>
<tr>
<td>Spanning tree</td>
<td>virittäjäpuu</td>
</tr>
<tr>
<td>Forest</td>
<td>metsä</td>
</tr>
<tr>
<td>Disconnecting set</td>
<td>erotusjoukko</td>
</tr>
<tr>
<td>Cut</td>
<td>leikkaus</td>
</tr>
<tr>
<td>XY-cutset</td>
<td>XY-leikkaus-joukko</td>
</tr>
</tbody>
</table>
Adjacency and Incidence Matrices are used to present Graphs

For an undirected graph, the Adjacency matrix is symmetric.

For directed graphs, +1 is a source and -1 is a sink of an arc.
For graph algorithms linked list presentation of adjacency is convenient.
A Tree can be traversed by Breadth-first-search

Works for directed links

Void <- BfsTree(n, root, n_adj_list)
dcl n_adj_list [n, list] /* array of lists of neighbors
 scan_queue [queue]
InitializeQueue(scan_queue)
Enqueue(root, scan_queue)
while NotEmpty(scan_queue)
 node <- Dequeue(scan_queue)
 Visit (node)
 for each (neighbor, n_adj_list[node])
 Enqueue(neighbor, scan_queue)
A Tree can also be traversed by Depth-first-search

`Void <- DfsTree(n, root, n_adj_list)`
`dcl n_adj_list [n, list]`

Visit (root)
for each (neighbor, n_adj_list[node])
 DfsTree(n, neighbor, n_adj_list)

Works for directed links
An undirected graph can be traversed by Depth-first-search

`Void <- Dfs (n, root, n_adj_list)`

dcl n_adj_list [n, list]

`visited[n] /* keeps track of progress */`

`void <- DfsLoop(node)`

`if not visited[node]`

`visited[node] <- TRUE`

`Visit (node)`

`for each (neighbor, n_adj_list[node])`

`DfsLoop(neighbor)`

`visited <- FALSE`

`DfsLoop(root)`
We can now find and label the connected components of an arbitrary graph

Void <- LabelComponents(n, n_adj_list)
dcl n_component_nr[n], n_adj_list[n, list]
void <- Visit(node)
 n_component_nr[node] <- ncomponents
n_component_nr[n] <- 0
ncomponents <- 0
for each (node, nodeset)
 if (n_component_nr[node] = 0
 ncomponents +=1
 Dfs(node, n_adj_list)
Minimum Spanning Tree is the ST with minimum cost

- We assign a length to each edge of the graph. “Length” can be distance, cost, a measure of delay or reliability.
- We look for minimum total length/cost, thus we talk about MST.
- If the graph is not connected, we may look for a minimum spanning forest.

\[n = c + e \], where \(n \) is the number of nodes, \(c \) the number of components and \(e \) number of edges selected so far holds always.
MC to a *spanning tree* leads to reception only once in each node

- Requires on/off bit \((\in ST)\) per link
- No group membership
- Concentrates traffic to the ST links
- Ideal would be a tree that
 - spans the group members only
 - minimizes state information in nodes
 - optimizes routes based on metrics
A Greedy MST algorithm

List <- Greedy(properties)

void <- GreedyLoop(*candidate_set, *solution)

element <- BestElementOf(candidate_set) /* for MST: shortest edge

test_set <- element ∪ solution

If test_set is feasible /* for MST: no cycles

 solution <- test_set

 candidate_set <- candidate_set \ element

If candidate set is not Empty

 Greedy_Loop(*candidate_set, *solution)

solution <- ∅

If (candidate_set <- ElementsOf(properties)) is not Empty

 GreedyLoop(*candidate_set, *solution)

return(solution)
Reverse-Path Forwarding computes an implicit spanning tree per source, is OK for dense trees

- RPF was first used in MBone

Receive M

S=Source
I=Interface

I∈ shortest path to S

no

Forward to all interf but I

yes

Stop

Note: path is computed from S to node.
In symmetric networks = path from node to S

Looking one step further: send only if our Node is on shortest path from S to next Node.
Requires 1 bit/source and /link in link state DB
Reverse path forwarding properties

- No group membership but can be scoped by TTL
- Guarantees fastest possible delivery since uses shortest paths only
- Different tree for each source --> traffic is spread over multiple links leading to better network utilization
“Flood and prune” introduces dynamic group membership

source

S

B

Leaf

Flood m

Prune =

Do not send to group G on this interface

If prunes on all interfaces, forward prune up the RPF tree

Drawbacks:
- first packet is flooded to the whole net
- nodes must keep state per S and G.
- state is transient (timed out)
Steiner tree spans the group with the minimal cost according to link metrics

- Has never actually been used, only simulated:
 - Finding the mimimum Steiner tree in a graph has exponential complexity and result is not necessarily optimal
 - The tree is undirected: links must be symmetrical
 - Algorithm is monolithic, can’t be distributed
 - The tree is unstable when changes occur: traffic routes change dramatically when e.g a member leaves.

- Popular because of its mathematical complexity
- Leads to Center based approach (CBT, PIM)